2. Groups

|  2.1. Binary composition,
Let Abea non-empty get. A hi .
"\ tion)on A s & mapping f ; 4 x 4 sy, CoWPOItion (or a binary opera.
i to each ordered * AX A — A. Therefore & binary composition
_f m i Fls Palr of elementg of A a definite element of A
F&b}&; | 'ﬁ,..m map ey I:f e felferally denoted by the symbol o. For a pair of el;
~ ements a, 1€ Image of (a,b) under the bin it i
) ) ary composition
denoted by acb. The image of the element (b, @) is obviously boa. oP

. i :I’hel. symbols like R "_:r ﬂ@a@ are also used to denote a binary com-
SH“‘ Examples.
1. On the set Z let o stand for the binary composition ‘addition’. Then
203=05,40— 4 =0.

2. On the set Z let o stand for the binary composition ‘multiplication’.
Then 203 = 6, 300 = 0.

8. On the set Z let o stand for the binary composition ‘subtraction’.
Then 302 = 1,103 = 2.

4. On the set Z let a binary composition o be defined by achb = a +
~ 2b,a,b € Z. Then 203 = 8,300 =3.

8. On the set Q let a binary composition * be defined by a x b

 Then2x5=25,3%8=12.
. ' iti is sai -empty set A if
A binary composition o is said to be defined on a non-emp
'. aoh c A foiyail a I(:in A. In this case the set A is said to be closed under
(or closed with respect to) the binary composition o.
‘addition’, since a € N,b €

N is closed under ® 6
oyt N is not closed under ‘subtraction’, because

bin N.

= :lzab.

 Fur example,
{= ¢ + b e N. But the set
- b does not belong to N for some 4,

efinition. Let o be a binary (.:omposition ;)(:nr ::Se: ,:E .
o is said to be commutative if 400 = boa , "
ative if ao(boc) = (aob)oc for all a,b,¢ € A

o Is said to be ass0ct
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: tinued).
Examples ( con cin
X = he set R is both commutative anq a;:s btive' " b
6. -\ddnu": on : l:ia both commutative and aa;lso::m ive, but gy}, tl'a.et~
Mhtt;:’ on‘tne i:eneit.her commutative nor associative,
Oon & SC

tof §. :
d P(S) be the power se Th
7. Let S be a non-empty set an L )
‘m:“:n}‘ N (intersection) and A (symmetric difference) are bma.ry

U

is commutative and associativ?’“

positions on P(S) and each of these 4
P(S).

8. Let M(R) be the set of all 2 x 2 real .matrices. Let o stang
m-ultiplica.tion of matrices. Then o is associative but not Commutatjy,

8. Let n be a positive integer and let us consider the. p—equixfaler}c'e -cla_g
of the relation p on Z defined by “a p b if and only if ¢ — p ig divisible by
n” for a,b € Z. There are n classes cl(0), cl(1), cl(2), . . . yvelin—1), Thege

We define a binary composition +, called addition modulo n,
set Z,, bya+b=g+p

In order that this definition ma;
well defined, j.e,
the equivalence classes. Th
integers such that ¢ (a’

d=a

b=V by -

Therefore (a + b) — (a’ + b') = tn,

on the

- ] Where t(=  + p) is an integer.
Consequently, at+b=qo T |
This proves that ‘addition mody]q n’ ig i & |
8ition on the set Z,,. & well defined binary comp

In like manner, we define g

' iti iplication
modulo 1, on ghe set Z, b Osition, called multiplicat

d_compogit W€ can prove similarly that
(1 , -d_comp ion on tph
il JJ } —_— {J(b) tl*el E - w. e set Z

1q ny i'e'! if cl(a') = cl(a) and
Both these ( 4
Cauge -Ompubitiuns are Commutative as well as associative, be-
?Z—b-‘-:&af_‘fi“‘b+a=b+dlbr alla, b e 7
a ==Q, =ba=}g for al) a,b ¢ Zy,;
and a 4 (f 4. ) i

-:— _a+(g+c)=ia+b)+c
= a+b4 a5~ (&+b)+é‘fora.ll a,E,EEZn;
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b%‘:iqn :

.
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by

Bdefined by T = {a € §: a0 =500 -

TR

)

B.Lat S be a set of two elemen
€81 be defined on S7 How many

il
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b3 = a5 albe)
' L3 a - m’—
= - c
ab.z = (8.5).2 foy Al a5 sey
2.2. Composition table, | "
When A is & Non-gm,
Pty finite
A can be defined by , tab) o Dinary comp gy
_ e, ¢ Position o t
of elements in A be p, (1 ta;;ll;d the composition tgple i the nﬂh;;;:
element of the get

- The elem and n columng, one f,
and the leftmost ent::;the r:let are listed on the top or!e:::
ﬁ“'{al.az,..., th Order,
and jth column. The nz} °"! 8404; appears o

@ are all elementg of A, thnce
ay0a;) then o is commutative ut the principal diagonal (le., if ajoa; =
For example, the table for the bi e m
3’ on the set Z; is nary composition of ‘addition modulo
+]0 1 3
00 1T 7
1|11 2 0
212 0 1

Here the composition is commutative,

Exercises 6

1. Examine whether the composition o defined on the set is (i) commutative,
(1) ve.

f'o on Z defined by aoh=a +b+1,0,b € Z;
(b) o on Q defined by acb=ab+1,0,b€Q;
(¢) o on R defined by aob = a +2b,a,b € R;
(d)ooaneﬂnedbyaobslabl,a,bER; N
() o on Z x Z defined by (a,b)o(e,d) = (a—¢,b- di; (a,ﬁ:,(n,)
{f) o on M,(u)deﬁnadbonBug(AB—BA),A, € Ma(R).

compos bset of
2.1..; ition on a set S. Let T be a su
4. L&t o be an associativebin&ry )¢ ! }. o

" ts. How many different binary compoa?:::nn:
;-liﬂ'annt commutative binary composi
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2.3. Groupoid,

Let G be a non-empty set on which a binary Composition o ig
Some algebraic strucure is imposed on G b?r the composition ¢
becomes an algebraic system. The algebraic system (Q,. 0)
oroupoia. The groupoid (G, o) is comprised of two entlt}es,
the compaosition o on G. The same set G may fqrm different groupgiy
with respect to different binary corpositions on it.

Examples,

fleq
and (4 q

18 said ¢, ¢
the set ¢ 8

1. (Z+) and (Z, -)

are both groupoids. They are different
systems although the

underlying set is Z in each case,
2.(Q+), (R, 4), (Q,.),(R,.) are groupoids.
3. (Z,,4),(Z,, ) are groupoids.
4 (Mz(n)l +)
IS & groupoid,
Definitions.
A groupoid (G, °) is said to be a commutative groupoid if the binary
* composition o js commutative,

An element e in G ig said to be an identity element in the groupaid
(G,0) if qog = eca =g forallgin @,

Example 4. (Z,+)
mutative groupoid,
element in (Z, -).

_DeRnitions,

T An element ¢ in G is saj

ifaoe:aforallain G.

""]gebr&iu

i a groupoid, where + ig the mat

rix addition, (Ma(R) )
where is the matrix multiplicati

43
On'

is & commutative groupoid but

(Z,~) is not a com-
0is an identity element in (Z,+)

. There is no identity

d to be a right identity in the groupoid (G, o)

An element ¢ iy G i8 8aid to be g left identity in the groupoid (G,¢)
ifeoanaiora.llainG. '

Examp|eg (continyeq),

8- In the groupiq (7, *), 018 & left identity as well ag o right identiy:
In the groupoid (Z, ) 14s g left identity ag wel] a right identity.

0. Inthe g Oupoid (Z, -), there is no left identity, but 0 is a right identitlf ‘
//fheorem 23.1. lfa groupoid (G, o) contains an identity element, the?
%t element ig unjqye

Proof. 1 Possible, let there be two identity elements ¢ and f in (G,e)
€N €0a = gog = ¢ ang Joa = aof = ¢ for a)) aingG.
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Now eof = e, by the property of f
and eof = f, by the property of e.
Therefore e = f.

rheorem 2.3.2. If a groupoid (G, o) contains a left identity as well as
right identity then they are equal and the equal element is the identity
m; in the groupoid.

Proof. Let e be a left identity and f be a right 1dent1ty in (G, o).
Then eca = a for all a in G, aof = q for all ¢ in G.
Now eof = f by the property of e
and eof = e by the property of f.
Therefore e = f.
This proves that e is an identity element in the groupoid and by the
Theorem 2.3.1, e is the only identity element in the groupoid.

Definition.

Let (G, o) be a groupoid containing the identity element e. An element
a in G is said to be invertible if there exists an element &’ in G such that
a'oa = aod’ = e. a’ is said to be an inverse of a in the groupoid.

An element a in G is said to be left invertible if there exists an element
bin G such that boa = e. b is said to be a left inverse of a in the groupoid.

An element a in G is said to be right invertible if there exists an
element ¢ in G such that aoc = e. ¢ is said to be a right inverse of a in
the groupoid.
Examples (continued).
7. 1is the identity element in the groupoid (Z,.). —1 in Z is invertible

pecause z.(—1) = (1):;:—1holds1anorx=—1 2 in Z has no

eft inverse in the groupoid because there is no element z in Z such that

2.2 = 1. Also 2 has no right inverse in the groupoid because there is no
“element y in Z such that 2.y = L.

8. 1 is the identity element in the groupoid (Q ). 2in Q is invertible
bﬂcau&ethereexlstsanelementngsuchthat52 23-—1 0in Q
i8 not invertible, |

Definition. If e be just a left identity in the groupoid (G, o), then an
Slement ¢ in G is said to be left e-invertible if there exists an element b
G such that bog = e and a is said to be right e-invertible if there exists
lement ¢ in G such that aoc = e. b is said to be a left e-inverse of a
¢ i8 said be a right e-inverse of a.

When e is just a right identity, then a left e-inverse and a right e
Verse of an element can be defined in a similar manner.
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od) tity. An element @ 1 & by,
l‘\‘l“t-in“ ' t iden ol oid. .
,m]"l - _.)0‘98 inthegr P
Bxe -.u}‘f‘id (B =), ht O'inwrse a+2b,a,be
0. 1nthe £ g well 08 8 N . is defined by a*0 ?;ht O-ix;ve’rtiblez ;
ot (xm*h; groupoid (z';). wl]:;tmo-invertible bu:brll:t d '\
 Inthe & in 4 18 : ve '
115 o right iden well kR
.. oft 0-inV
in L iele
PR ciative. -
9.4, SemigrouP ) s said to be 8 semgTOLP e BAEE f o4
" 2 aoupcid (G ©) B tative SeMIgroup It o\
A semigroup \™
et BLTVE
Exampies

(Q, +), (R, +) are semigroups:
), (R,.) are semigroups.

7 +) is 8 semigroup-
'Z. ) is & semigroup- (Q:-

| ]

'Z -) is not & SeMIgroup. | |
Z,. ) is a semigroup. It is a commutative semigroup.

Let (G, ) be & semigroup and a € G. Then aca € G.

golgoa) = (aca)oa, since o is assocmtwe.‘ -

Dropping the parantheses, each of them is written as aoaod.

Thus aoaca € G,aoacaoa € G, ... | _

Parantheses may, however, be inserted in any manner for the purpos g
of calculation. _

The positive integral powers of a € G are defined as follows.

¢’ = g,0* = gog,a® = gogog,...,a""! = gPoq for all n € N.
'I;:-bwem 24.1. Let (8,0) be a semigroup and a € S. Then a™*"#
¢"od" for all m,n € N.
Fruof """ = 4000 - . og

= (@ea0 - ea)o(aoao - - og)

T Uies 7 times
- = Goao - .
Pierefore gmen o a"'o:.?‘ (m + 1 times ), since o is associative.
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(11) there exists an element in
in G-

A monoid (G, o)
tative.

1. (2,+) is a monoid, 0 being the identity element.

2. (Z,.) is a monoid, 1 being the identity element.

, 8. Let E be the set of all even integers. Then
. pot & monoid.

G such that eog = aoce = g for all a

i . —p
8 8aid to be g commutative monoid if o be commu-

(E,.) is a semigroup but

4 (Zn,.) is a monoid, 1 being the identity element,

F 3 (Mz(R),_ ) is a monoid, the identity matrix I; being the identity
. element. It is not a commutative monoid.

Theorem 2.5.1. In a monoid (M, 0) if an element a be invertible then
it has a unique inverse.

Proof. Since a is invertible, there exists an element a’ in M such that
aca’ = a'oa = e, e being the identity element. o’ is said to be an inverse
of a.
. If possible, let there be two inverses o’ ,a" of a in M.
. Then aod’ = a’6a = e and aca” = a”oq = e,e being the identity
~element. :

Now a’o(aoa”) = (a’oa)oa”, since o is associative.
- But a’o(aca”) = a’oe = o’ and (a’oa)ea” = eoa’ = g
Therefore @’ = a”. This proves the uniqueness of the inverse of a.

eorem 2.5.2. In a monoid (M, o) if an element a be left invertible
B well as right invertible then a is invertible.

vof. Let e be the identity element and b be a left inverse, ¢ be a right
averse of g. '
Then boq = e,aoc = e.

Now bo(aoc) = (boa)oc, since o is associative.
But bo(aoc) = boe = b and (boa)oc = eoc = c.
Therefore b = ¢ and boa = aob = e. This shows that q is invertible.

Eﬂnitiqn. In a monoid an invertible element is said to be a unit.

A '-/Quasigroup.
. A groupoid (G, o) is said to be a quasigroup if for any two elements
% b € @, each of the equations aoz = b and yoa = b has a unique solution

——

—
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in G.
Examples. _ |
, : apoid. Let a,b € 7. The equation a + 2 = b has th, |
1 @4H)be m;oa in Z and the equation y +a = b has the solutig,

NETT :in"zz.’ Therefore (Z,+) is 8 quasigroup. / |
Zﬁ"z. ) js a groupoid. 2 € Z,3 € Z. T?Le equation 2.z = 3 has g,
sn]u;mn in Z. Therefore (Z,.) isnot a quasigroup-.

8. (Z,-) is a quasigroup but not a semigroup-.

4. (Ma(R),.) is a groupoid. The equation A.X = B has no _aolution.in
M, if A be a singular matrix. Therefore (Mg, .) is not a quasigroup.

Let G be a finite set and a,b,c,d € G. The solvability of the equation
wox = b can be read from the entries along the row of a in the compo-
sition table. If the row of a contains b in the column of the element ¢
<hen aoc = b and therefore c is a solution of the equation aox = b. If b
appears only once in the row of a, the solution of the equation acx =1b
i unique.

Similarly, the solvability of the equation yoa = b can be read from
the entries along the column of a in the composition table. If the column
of a contains b in the row of the element d then doa = b and therefore d
is 2 solution of the equation yoa = b. If b appears only once in thecolumn
of a then the solution of the equation yoa = b is unique.

' For}example, let us examine the o-composition table for the set G =
{a,b,¢c}.

o RO
Nam—— (R
no-R|R
o R oo

€|

RO

The row of b contains
two solutions a.ndcl(:,hey uebzt:ize:r Therefore the equation box = b has

The row of b contaj :
WG z=bigg Huluti;m,a' Therefore the equation box = a has a solutio?

The row of b
20 soltion in G.dou not contain ¢. Therefore the eqution box = ¢ ha¥

=c.

The colump of §

two solutions and ¢ contains b twice,

Theref: : _ -
hey are y = g,y = refore the equation yob = b haf

Cl
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The column of b containg q. Therefore
solution in G. v=201is a solution,

the equation yob = a has a

The column of b does not contain ¢. Therefore ¢

”.golution in G, he equation yob = ¢

hos

‘Worked Examples.
% Definc a binary composition o on Z by acb =a + b — ab for a b € Z.
ghow that (Z, o) is a monoid. ’

Let a € Z,b € Z. Then aob = a+b— ab € Z. Therefore Z is closed
o

Lat o,b,c€Z.
ao(boc) = ao(b+c - be)

¢'
]
I. o
f
i

a+ (b+c—be)—a(b+c— be)
a+b+c—ab- bc— ca+ abe.
(@+b—ab)+c— (a+b—ab)c
a+b+c— ab— bc— ca+ abe.
As ao(boc) = (aob)oc, o is associative.

~ Let usexamine if there exists an element e in Z such that eoa = aoe =
~ gforallain Z.

2 eca=a = e+a—ea=a

e(l-a)=0

e=0

a+e—ae=a

e(l—a)=0

: e=0.

~ This shows that 0 is the identity element.

- Therefore (Z, o) is a monoid.

(acb)oc = (a + b — ab)oc

Honn

and goe = a

L4448

» Let (5,0) be a finite semigroup and a € S. Prove that there exist
tive integers m, n such that ¢™*" = a™. Deduce that a™" is an
fmpotent element in the semigroup.

- [In a semigroup (S, o), an element z is said to be an idempotent ele-
Lif zog = 2.

' Since (S, o) is a semigroup and a € S, a, 02,03, ... all belong to S.

- Since §g a finite set, there exist positive integers m and p (where
) such that a? = a™.

" Let p= 4,0 > 1. Then a™*™ = a™ for some positive integers
e, T

L Q" = g oy omogn = M og™ = g™ = M,

™ amFIn oy amngan = aMtenggh = gMtan - am+3n
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