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2.1. Binary composition. 
Let A be a non-empty set. A binary composition (or a binary opera Hon) on A is a mapping f:AxA ’ A. Therefore a binary composition f Assigns to each ordered pair of elements of A a definite element of A. This mapping f is generally denoted by the symbol o. For a pair of el ernents a, b in A, the image of (a, b) under the binary composition o is denoted by aob. The image of the element (b, a) is obviously boa. 

2. Groups 

The symbols like *, +,, ,O are also used to denote a binary com position. 

Examples. 
1. On the set Z let o stand for the binary composition 'addition'. Then 203 = 5, 4o � 4 =0. 

2. On the set Z let o stand for the binary composition 'multiplication'. 
Then 2o3 = 6,3o0 = 0. 

3. On the set Z let o stand for the binary composition 'subtraction'. 
Then 3o2 = 1, lo3 =-2. 

4. On the set Z let a binary composition o be defined by aob = a + 
2b, a, b EZ. Then 203 =8,3o0 = 3. 

6. On the set let a binary composition + be defined by a*b =ab. 
Then 2 * 5 = 5, 3 *8= 12. 

A binary composition o is said to be defined on a non-empty set A if 

aot E A for all a,b in A. In this case the set A is said to be closed under 

(or closed with respect to) the binary composition o. 

For exanmple, the set N is closed under 'addition', since a ¬ N, b E 

Na+be N, But the set N is not closed under 'subtraction', because 

-b does not belong to N for some a, b in N. 

Deñnition. Let o be a binary composition on a set A. 

o is said to be commutative if aob = boa for all a, b ¬ A. 

o is said to be associative if ao(boc) = (a0b)oc for all a, b, c ¬ A. 

HA-5 
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Examples ( continued). 
6. Addition on the set R is both commutative and associative. Multipi. cation on the set R is both commutative and associative, but gubtraction on the set R is neither commutative nor associative. 

HIGHER ALGEBRA 

(union), n (intersection) and A (symmetric difference) are binary com. 

7. Let S be a non-empty set and P(S) be the power set of S. Then 
positions on P(S) and each of these is commutative and associative P(S). 
8. Let M2(R) be the set of all 2 × 2 real matrices. Let o stand for. multiplication of matrices. Then o is associative but not commutative 9. Let n be a positive integer and let us consider the p-equivalence classe of the relation p on Z defined by apbif and only if a - b is divisible by n" for a, bE Z. There are n classes cl(0), cl(1), cl(2), are also called the classes of residues of integers modulo n. WVe use the 

, cl(n- 1). These notation � to denote the class cl(a). Let Zn be the set of residue classes {ö, I,2,...,n-1}. 
We define a binary composition t, called addition modulo n, on the 

set Zn by �+ b=a+ b. 
In order that this definition may be valid we must check that it is 

well defined, i.e., it is independent of the choice of representatives of 
the equivalence classes. Therefore we have to show that if a, a',6, b' are 
integers such that cl(a) d(a) and cl(b)) = l(b) then a +b= a + b. 

k= k' ’a- a' = kn for some integer k, b= ’h-b = pn for some integer p. Therefore (a + b) � (a' + b) = tn, where t(= k+p) is an integer. Consequently, a +b=a'+8. 
This proves that 'addition modulo n' is a well defined binary compo 

sition on the set Zn. 
In like manner, we define a binary composition, called multiplication 

nodulo r, on the set Zn by �.b = ab and we can prove similarly that 
it is a well defined composition on the set Zn, i.e., if cl(a)= cl(a) and 
do)= d(b) then ah = a/U. Both these conpositions are COImmutative as well as associative, be-
Cause 

a+b a+b=b+a b+k for all �, be Zni 
a.b = ab = ba = b.k for all �, b E Zni and a + (6 + e) k +b+tc=a+ (b+ c) = (a + b) + c a +b+ 
 = (� + ) + � for all �, b, � E Zni 
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ab.
 = (a.b).& for all k, b, & e Zn 2.2. Composition table. 
When A is a non-empty finite set a binary composition o on the set 

A Cn be defined by a table, called the composition table. If the nurmber 
of elements in A be.n, the table has n rows and n columns, one for each 

Alenent of the set. The elements of the set are listed on the topmost row 
and the leftmost column in the 8ame order. fA= {a1, 42,. , an} then ayoa, appears on the table in the ith row 

and th column. The n entries of the table are all elements of A, ince 
A is cdoned under o. 

Itthe table be symmetric about the principal diagonal (i.e., if aoay = a_oai) then o is commutative. 

1 2 

For example, the table for the binary composition of 'addition modulo 3 on the set Z is 
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Here the composition is commutative. 

Exercises 6 

l. Examine whether the composition o defined on the set is (i) commutative, 
() a6ocjative. 

f) o on Z defined by aoh +b+1, a, b ¬ Z; 

(b) o on 0 defined by aob = ab + 1, a, b E ; 

(C)o on R defined by aob a+ 26, a, be R; 

(4)o on R defined by aob = ab\, a, bE R; 

(e) o on ZxZ defined by (a, b)o(e, d) = (a - e,b- d), (a, b), (e, d) eZxZ; 

() on Ma(R) defined by AoB=(AB - BA), A, BE M(R). 

Let o be an as8ociative binary composition on a set S. Let T be a subset of 

Ddetined by T = fa e S:a os oa for all a e S}. Prove that T is cloeed 

under o. 

O Let be a set of two elements. How nany different binary compositions 

CAn be defned on S? How many different commutative binary compositions 

Can be defined on S? 
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2.3. Groupoid. 
Let G be & non-empty set on which a binary composition o is defined. Some algebraic strucure is imposed on G by the composition o and beoomes an algebraic system. The algebraic system (G, o) is sajd to bea groupoid The groupoid (G, o) is comprised of two entities, the set G and the composition o on G. The same set G may form difterent groupoids with respect to different binary compositions on it. 

Examples. 

HIGHER ALGEBRA 

1. (2,+) and (Z,-) are both groupoids. They are different algebraie systens although the underlying set is Z in each case. 
2. (Q.+),(R, +), (Q..), (R,) are groupoids. 
3. (Zn,+), (Zn,.) are groupoids. 
4. (M2(R), +) is a groupoid, where + is the matrix addition. (Ma(R).) is a groupoid, where is the matrix multiplication. 
Delnitions. 

A groupoid (G, o) is said to be a commutative groupoid if the binary composition o is commutative. 
An element e in G is said to be an identity element in the G, o) if aoe = eoa=a for all a in G. 

Deinitions. 

Example 4. (2,+) is a commutative groupoid but (Z,-) is not a com mutative groupoid. 0 is an identity element in (Z, +). There is no identity element in (Z,-). 

An elenent e in G is said to be a right identity in the groupoid (G,9) if aoe = a for all a in G. 

Examples (continued). 

groupoid 

An elerment e in G is said to be a left identity in the groupoid (G, if eoa = a for all a in G. 

6. In the youpoid (Z, +), 0 is a left identity as well as a right identity In the groupoid (2,.),1 is a left identity as well a right identity. 

tyat element is unique. 

6. In the groupoid (2, -), there is no left identity, but 0 is a: a right identity pheorem 2.3.1. If a groupoid (G,o) contains an identity elerment, the 

Proof. If possible, let there be two identity elements e and f in (G, o). "Then eog = 00e= and foa = aof a for all a in G. 



Now eof e, by the property of f 
and eof f, by the property of e. 
Therefore e = f. 

GROUPS 

Pheorem 2.3.2. If a groupoid (G, o) contains a left identity as well as 
right identity then they are equal and the equal element is the identity 
element in the groupoid. 

Proo. Let e be a left identity and f be a right identity in (G, "). 
Then eoa = a for all a in G, aof =a for all a in G. 
Now eof =f by the property of e 
and eof =e by the property of f. 
Therefore e = f. 

Defnition. 
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This proves that e is an identity element in the groupoid and by the 
Theorem 2.3.1, e is the only identity element in the groupoid. 

Let (G, o) be a groupoid containing the identity element e. An element 
a in G is said to be invertible if there exists an element a' in G such that 
dog = aoa' =e. a' is said to be an inverse of a in the groupoid. 

An element a in G is said to be left invertible if there exists an element 
b in G such that boa = e. bis said to be a left inverse of a in the grOupoid. 

Examples (continued). 

An element a in G is said to be right invertible if there exists an 
elerment c in G such that aoc = e. cis said to be a right inverse of a in 
the groupoid. 

7. l is the identity element in the groupoid (Z,-). -1 in Z is invertible 
because z.(-1) = (-1).z = 1 holds in Z for * =-1. 2 in Z has no 
left inverse in the groupoid because there is no element z in Z such that 
z.2 = 1. Also 2 has no right inverse in the groupoid because there is no 
element y in Z such that 2.y=1. 

8. 1 is the identity element in the groupoid (@,.). 2 in Q is invertible 
because there exists an element in Q such that .2= 2.=1. 0 in 
is not invertible. 

Definition. If e be just a left identity in the groupoid (G, o), then an 
element a in G is said to be left e-invertible if there exists an element b 
nG such that boa =e and a is said to be right e-invertible if there exists 
an elernent c in G such that aoc = e. b is said to be a left e-inverse of a 
and c is said be a right e-inverse of a. 

When e is just a right identity, then a left e-inverse and a right e 
hverse of an element can be defined in a similar manner. 
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Examples (oontinued). 

9. In the 
groupoid (Z, -)0 is a right 

identity. 
An elernent a in 2) 

lef 
0-inverse As well aS A right 

0-inverse in the 
groupoid. 

10. In the 
groupoid 

(Z, *) where is defined by a sb= a+. 2b, a, b E2 

is s right 
identity. 3 in Z is left 

0-invertible but not right 0-invertible. 

in Z is left 
O-invertible as well as right 

0-invertible. 

2.4. Semiroup. 

A groupoid (G, o) is said to be a semigroup if o is associative. 

A semigroup (G,o) is said to be a commutative semigroup if o 

commutstive. 

HIGHER 

Examples. 

i(Z+) is & semigroup. (,+), (R, +) are semigroups. 

2 (Z,.) is a semigroup. (0,-), (R, ) are semigroups. 

S. (Z, -) is not a semigroup. 

4 (Z) is a semigroup. It is a commutative semigroup. 

Let (G, o) be a semigroup and a¬G. Then aoa E G. 

aoaoa) = (aoa)oa, since o is asso ciative. 
Dropping the parantheses, each of them is written as aogoa. 

Thus aog0a ¬ G, aogoGoa E G,.. 
Parantheses may, however, be inserted in any manner for the purpos 

of caiculstion. 

Te positive integral powers of a EG are defined as follows. 
o=a,o = g0a, a =aogoa,..., atl = oa for all n¬N. 

Theorea 2.4.1. Let (S, o) be a semigroup and a ¬ S. Then amtn 
ca for all m,n EN. 
Pruof = 0oo m +n times ) 

=000 Therefore ght 
2.5 Monoid. 

n times 
a (m+n times ), since o is associative. oa. 

TILoToid. Therefore an algebraic system (G, o) is said to be a monoid 

eImigrouy (G,o) containing the identity element is said to be (0) aolboc)= (uob)oc for all a, b, c¬ G; and 



in G. 
) there existS an element e in G such that eoa = aoe a tor all a 

Examples.. 

A monoid (G, o) is said to be a comnutative monoid if o be cornmu tative. 

GROUPS 

1 (Z +) is a monoid, 0 being the identity element. 
. (2,.) is a monoid, 1 being the identity element. 

Let E be the set of all even integers. Then (E,) is a semigroup but Dot a monoid. 

4. (Zn) is a monoid, 1 being the identity elerment. 
5. (M2(R), .) is a monoid, the identity matrix I; being the identity element. It is not a commutative monoid. 
Theorem 2.5.1. In a monoid (M, o) if an element a be invertible then it has a unique inverse. 

Proof. Since a is invertible, there exists an element a' in M such that aod' = a'og = e, e being the identity element. a' is said to be an inverse 
of a. 

If possible, let there be two inverses a',a" of a in M. 
Then aoa' = a'oa =e and aoa" = d'oa e,e being the identity 

element. 
Now a'o(aoa") = (a'oa)oa", since o is associative. 
But a'o(aoa") = doe d and (a'oa)oa" = eoa = a". 
Therefore a' = a'. This proves the uniqueness of the inverse of a. 
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Theorem 2.5.2. In a monoid (M, o) if an element a be left invertible 
as well as right inyertible then a is invertible. 

inverse of a. 
Prof. Let e be the identity element and b be a left inverse, c be a right 

Then boa = e, aoc =. 

Now bo(aoc) = (boa)oc, since o is associative. 
But bo(aoc) = boe = b and (boa) oc = eoc =c. 
Therefore b cand boa == 0ob = e. This shows that a is invertible. 

Definition, In a monoid an invertible element is said to be a unit. 

Z6. Quasigroup. 
A groupoid (G, o) is said to be a quasigroup if for any two elements 

a,bE G, each of the equations aor = b and yoa =b has a unique solution 
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in G. 

Examples. 

1. (Z, +) is a groupoid. Let a, b E Z. The equation a +¢=b has the 

solution 
=a in Z and the equation y + a =b has the solution 

y=-a in Z. Therefore (Z, 

HIGHER ALGEBRA 

2. (Z,) is a groupoid. 2 E Z,3 E Z. The equation 2.2 = 3 has . 

solution in Z. Therefore (Z,.) is not a quasigroup. 

S. (Z,-) is a quasigroup but not a semigroup. 

+) is a quasigroup. 

4. (Ma(R),.) is a groupoid. The equation A.X = B has no solution in 

M, if A be a singular matrix. Therefore (M2,) is not a quasigroup. 

Let G be a finite set and a, b, c, d EG. The solvability of the equation 

aor = b can be read from the entries along the row of a in the compo 

sition table. If the row of a contains b in the column of the element c 

then aoc = b and therefore c is a solution of the equation aoT = b. If b 

appear8 only once in the row of a, the solution of the equation ao = 

is unique. 
Similarly, the solvability of the equation yoa = b can be read from 

the entries along the column of a in the composition table. If the column 
of a contains b in the row of the element d then doa =b and therefore d 

is a sohution of the equation yoa = b. If b appears only once in thecolumn 
of a then the solution of the equation yoa = b is unique. 

a 

For example, let us examine the o-composition table for the set 
{a, 6, c}. 

c 

C 

The row of b contains b twice. Therefore the equation bor = b bas two solutions and they are z =a, z = c. 
"The row of b contains a. Therefore the equation bo = a has a solut0 in G. z =b is a 8olution. 
The row of b does not contain c. Therefore the eqution bor = c D no solution in G. 

The column of b contains b twice, Therefore the equation yob = b ha two solutions and they are y 4,y =C. 



solution in G. y = is a solution. 

Worked Examples. 

e column of b does not containc. Therefore the equation yob = c 
has no solution in G. 

column of b contains a. Therefore the equation yob a has a 

Deâne a binary composition o on Z by aob = a+b- ab for a, b ¬ L. 
Show that (Z, o) is a monoid. 

Let a, b, cEZ. 

Let a ¬ Z,6 E Z. "Then aob = a +b-ab E Z. Therefore Z is closed 
under o. 

ao(boc) = ao(b+c- bc) 

(aob)oc = (a +b- ab) oc 

GROUPS 

As ao(boc) =(aob)oc, o is associative. 

and aoe = a 

Let us examine if there exists an element e in Z such that eog = a0e= 
a for all a in Z. 

eoa = a 

m, n. 

= 

Let 

e=0 

at (6+ c-bc) - a(b +c- bc) 
a+b+c- ab- be- ca + abe. 
(a+b- ab) + c-(a+b-ab)c 
a+b+c- ab- bc- ca abc. 

e(1- a) =0 

am+n 

This shows that 0 is the identity element. 

Therefore (Z, o) is a monoid. 
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a +e ae = a 

’ e(1-a) =0 
e=0. 

2. Let (S, o) be a finite semigroup and a ¬ S. Prove that there exist 
POsitive integers m, n such that amtn = a". Deduce that an is an 
idempotent element in the semigroup. 

n a semigroup (S, o), an element z is said to be an idempotent ele 
ment if cor = . 

Since (S, o) is a semigroup and a E S, a, a", a',... all belong to S. 
Since S is a finite set, there exist positive integers m and p (where 
Tr) such that aP = a". 

p= m + n,n > 1. Then g+t = " for some positive integers 

m+2n ’mtnoah = antnoa ’ amt2n = mtSn 
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