7.1. Limit of a function.

Let f be a real function defined on a domain $D \subset \mathbb{R}$. In order that f may have a limit $l \in \mathbb{R}$ at a point c, for x sufficiently close to c, f(x) should be arbitrarily close to l. For this to be meaningful, it is necessary that c be a limit point of the domain D. Keeping this requirement in view, we give the formal definition.

Definition. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. Let c be a limit point of D. A real number l is said to be a limit of f at c if corresponding to any neighbourhood V of l there exists a neighbourhood W of c such that $f(x) \in V$ for all $x \in [W - \{c\}] \cap D$.

This is expressed by the symbol $\lim_{x\to c} f(x) = l$.

Equivalent definition. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. Let c be a limit point of D. A real number l is said to be a limit of f at c if corresponding to a pre-assigned positive ϵ there exists a positive δ such that

$$l-\epsilon < f(x) < l+\epsilon ext{ for all } x \in N'(c,\delta) \cap D,$$
 where $N'(c,\delta) = \{x \in \mathbb{R} : 0 < \mid x-c \mid < \delta\} = (c-\delta,c+\delta) - \{c\}.$

Note 1. In order that we may enquire if $\lim_{x\to c} f(x)$ exists, c must be a limit point of the domain D of the function f.

Note 2. The definition demands that all values of f in some deleted δ -neighbourhood $N'(c,\delta)$ contained in D must lie in the chosen ϵ -neighbourhood of l. It does not matter whether c belongs to D or not. Even if $c \in D$, f(c) need not lie in the ϵ -neighbourhood of l.

Theorem 7.1.1. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. Let $c \in D'$. Then f can have at most one limit at c.

Proof. Suppose, on the contrary, there exist two different limits, l, m of the function f at c.

Since $l \neq m$, we assume m > l, without loss of generality. Let $\epsilon = \frac{m-l}{2} > 0$. Then the neighbourhoods $(l - \epsilon, l + \epsilon)$ and $(m - \epsilon, m + \epsilon)$ are disjoint.

Since l is a limit of f at c, there exists a positive δ_1 such that $l - \epsilon < f(x) < l + \epsilon$ for all $x \in N'(c, \delta_1) \cap D$.

Since m is a limit of f at c, there exists a positive δ_2 such that $m - \epsilon < f(x) < m + \epsilon$ for all $x \in N'(c, \delta_2) \cap D$.

Let $\delta = \min\{\delta_1, \delta_2\}$.

Then $l - \epsilon < f(x) < l + \epsilon$ and $m - \epsilon < f(x) < m + \epsilon$ for all $x \in$ $N'(c,\delta)\cap D$. This is a contradiction, since the neighbourhoods $(l-\epsilon,l+\epsilon)$ and $(m - \epsilon, m + \epsilon)$ are disjoint. in. Minit of a lunction.

Therefore l = m and the theorem is done.

Worked Examples.

1. Show that $\lim_{x\to 2} f(x) = 4$, where $f(x) = \frac{x^2-4}{x-2}$, $x \neq 2$.

Here the domain D of f is $\mathbb{R} - \{2\}$. 2 is a limit point of D.

When $x \in D$, $|f(x) - 4| = |\frac{x^2 - 4}{x - 2} - 4| = |x - 2|$.

Let us choose $\epsilon > 0$.

 $\mid f(x)-4\mid <\epsilon$ whenever $\mid x-2\mid <\epsilon$ and $x\in D,$ i.e., for all $x\in D$ satisfying $0 < |x-2| < \epsilon$.

Therefore $|f(x) - 4| < \epsilon$ for all $x \in N'(2, \delta) \cap D$ [taking $\delta = \epsilon$]. So we have $\lim_{x\to 2} f(x) = 4$.

2. Show that $\lim_{x\to 2} f(x) = 4$, where $f(x) = \frac{x^2-4}{x-2}, x \neq 2$ = 10, x = 2

Here the domain D of f is \mathbb{R} . 2 is a limit point of D.

When $x \in D - \{2\}$, $|f(x) - 4| = |\frac{x^2 - 4}{x - 2} - 4| = |x - 2|$. Let us choose $\epsilon > 0$.

 $|f(x)-4| < \epsilon$ whenever $|x-2| < \epsilon$ and $x \neq 2$.

Therefore $|f(x) - 4| < \epsilon$ for all $x \in N'(2, \delta) \cap D$ [taking $\delta = \epsilon$]. So we have $\lim_{x\to 2} f(x) = 4$.

3. Show that $\lim_{x\to 0} f(x) = 0$ where $f(x) = \sqrt{x}, x \ge 0$.

Here the domain D of f is $\{x \in \mathbb{R} : x \geq 0\}$. 0 is a limit point of D. Let us choose $\epsilon > 0$.

When $x \ge 0$, $|f(x) - 0| = \sqrt{x}$.

Therefore $|f(x) - 0| < \epsilon$ for all x satisfying $0 < x < \epsilon^2$, i.e., for all $N'(0, \delta) \cap D$ [taking $\delta - \epsilon^2$] $x \in N'(0, \delta) \cap D$ [taking $\delta = \epsilon^2$]. So we have $\lim_{x\to 0} f(x) = 0$.

Note. Here $N'(0,\delta) \cap D = (0,\delta)$, since $D = \{x \in \mathbb{R} : x \ge 0\}$.