

'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2024

DSE-P4-MATHEMATICS

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains DSE4A and DSE4B.

The candidates are required to answer any *one* from *two* papers.

Candidates should mention it clearly on the Answer Book.

DSE4A

THEORY OF EQUATIONS

GROUP-A

1,		Answer any <i>four</i> questions:	$3 \times 4 = 12$
	(a)	Express the polynomial $8x^3 + 2x + 2$ as a polynomial in $(2x-1)$.	3
	(b)	Apply Descartes' rule of signs to show that the equation $x^4 + 2x^2 - 7x - 5 = 0$ has two real roots and two imaginary roots.	3
	(c)	Find the condition that the cubic $x^3 - px^2 + qx - r = 0$ should have its roots in G.P.	3
	(d)	Find the special roots of the equation $x^6 - 1 = 0$.	3
	(e)	Find the equation whose roots are the cubes of the roots of the equation $x^3 + 3x^2 + 2 = 0$.	3
	(f)	If α , β , γ be the roots of the equation $x^3 + px^2 + qx - r = 0$, then form the	3
		equation whose roots are $\beta \gamma + \frac{1}{\alpha}$, $\gamma \alpha + \frac{1}{\beta}$, $\alpha \beta + \frac{1}{\gamma}$.	
	-	Complete residence of falses a continued seek on Equal case estatement that	
4	· '	GROUP-B	
7	/	Answer any four questions	$6 \times 4 = 24$
2.	Ť	Prove that the roots of the equation $(x+2)(x-3)(x+4)+(x+1)(x+3)(x-5)=0$ are all real and distinct. Separate the intervals in which the roots lie.	6
3.		If α be a special root of the equation $x^{12} - 1 = 0$, prove that $(\alpha + \alpha^{11})(\alpha^5 + \alpha^7) = -3$	6
4.		Solve the equation by Cardan's method $x^3 - 18x - 35 = 0$.	6

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/Revised & Old/2024

- 5. Show that the equation $x^3 3x + k = 0$ has three distinct real roots, if -2 < k < 2.
- 6. Solve the equation, given that it has multiple roots, $x^4 + 2x^3 + 2x^2 + 2x + 1 = 0$.
- 7. If α , β , γ be the roots of the cubic equation $x^3 21x + 35 = 0$, then show that $(\alpha^2 + 2\alpha 14)$ is equal to either β or γ .

GROUP-C

Answer any two questions

 $12 \times 2 = 24$

8. (a) Find the number and position of real roots of the equation $x^4 - 6x^3 + 10x^2 - 6x + 1 = 0$

. .

6

6

- (b) If a, b, c be the roots of the equation $x^3 + qx + r = 0$, then show that
- 6

- $a^5 + b^5 + c^5 + 5abc(bc + ca + ab) = 0$
- 9. (a) Solve the equation by Ferrari's method: $x^4 6x^2 + 16x 15 = 0$
 - (b) If α be a root of the equation $x^3 3x 1 = 0$, prove that the other roots are $2 \alpha^2$, $\alpha^2 \alpha 2$.
- 10.(a) If α be an imaginary root of the equation $x^7 1 = 0$, find the equation whose roots are $\alpha + \alpha^6$, $\alpha^2 + \alpha^5$, $\alpha^3 + \alpha^4$.
 - (b) Solve the reciprocal equation $x^4 4x^3 + 3x^2 4x + 1 = 0$.
- 11.(a) The equation $3x^3 + 5x^2 + 5x + 3 = 0$ has three distinct roots of equal moduli. Solve it.
 - (b) Use Sturm's theorem to show that the equation $x^4 3x^3 2x^2 + 7x + 3 = 0$ has one root between (-2) and (-1), one root between (-1) and 0 and two roots between 2 and 3.

DSE4B

DIFFERENTIAL GEOMETRY

GROUP-A

1. Answer any *four* questions:

- $3 \times 4 = 12$
- (a) Check whether the curve $\gamma(t) = \left(1 t, \frac{1 + t^2}{t}, \frac{1 + t}{t}\right)$ is planer or not.
- (b) Prove that the curve $x = 2\sin^2 t$, $y = 2\sin t \cos t$, $z = 2\cos t$ lies on a sphere.
- (c) Find the reparametrization of $\gamma(t) = \left(t^2, \frac{t^3}{\sqrt{1-t^2}}\right), -1 < t < 1$.
- (d) Find the radius of curvature for the curve $\gamma(t) = (2t, 3t^2, 2(t^3 + 1))$.
- (e) Show that $x^2 + y^2 + z^4 = 1$ is a smooth surface.
- (f) Find the evolute of the curve $x = a \cos t$, $y = a \sin t$, $z = a \cot bt$ where $a \ne 0$ and $b \ne \frac{\pi}{2}$ are constants.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/Revised & Old/2024

GROUP-B

Answer any four questions

 $6 \times 4 = 24$

- 2. Prove that the curve u + v = constant are geodesic on a surface with the metric $(1+u^2) du^2 2uv du dv + (1+v^2) dv^2$.
- 3. Find the first fundamental form of $\sigma(\theta, \varphi) = (\sec h\theta \cos \varphi, \sec h\theta \sin \varphi, \tan \theta)$.
- 4. Find the Gaussian curvature for the surface $\sigma(u, v) = (-\cosh u \cos v, -\cosh u \sin v, \sin u)$
- 5. Find the standard unit normal of $\sigma(\theta, \varphi) = ((a + b\cos\theta)\cos\varphi, (a + b\cos\theta)\sin\varphi, b\sin\theta)$

where a, b are constants.

- 6. Define developable surface. Find the conditions for a surface z = f(x, y) to be a developable surface.
- 7. For the curve $\gamma(t)$, prove that $[\gamma' \gamma'' \gamma'''] = \frac{[\dot{r} \ddot{r} \ddot{r}']}{\dot{r}^6}$

GROUP-C

Answer any two questions

 $12 \times 2 = 24$

- 8. (a) Define involute of a curve. Prove that the involute of $r(t) = (t, \cosh t)$ is $x = \cosh^{-1}(\frac{1}{y}) \sqrt{1 y^2}$.
 - (b) Calculate the second fundamental form of the surface. $\sigma(u, v) = (u \cos v, u \sin v, v)$
- 9. (a) Define asymptotic lines. Prove that parametric curve on a surface $\sigma(u, v) = (u \cos v, u \sin v, v) \text{ are asymptotic line.}$
 - (b) Find the arc length of the curve $x = 3\cosh 2t$, $y = 3\sinh 2t$, z = 6t from t = 0 to $t = \pi$.
- 10.(a) Prove that the geodesic curvature of a geodesic on a surface is zero and conversely.
 - (b) Find the parametric representation of $x^3 + y^3 + 3xy = 0$.
 - (c) Show that the radius of spherical curvature of a circular helix $x = a \cos \theta$, $y = a \sin \theta$, $z = a\theta \cot \alpha$ is equal to the radius of circular curvature.
- 11. State Frenet-Serret equation verify it for the curve $r(t) = \left(\sin^2 \frac{t}{\sqrt{2}}, \frac{1}{2}\sin t\sqrt{2}, \frac{t}{\sqrt{2}}\right)$

____x__