

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2024

DSE-P3-MATHEMATICS

(REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains DSE-3A and DSE-3B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

DSE-3A

POINT SET TOPOLOGY

GROUP-A

	Answer any <i>four</i> from the following questions:	3×4 = 1	12
(a)	Let $f: X \to Y$ be a continuous function and $\phi \neq A \subset X$. If $x \in \overline{A}$, does $f(x)$ necessarily belong to $\overline{f(A)}$? Justify your answer.		3
(b)	Let $F(X)$ be the collection of all finite subsets of X . If X is infinite, then prove that $ F(X) = X $, where $ \cdot $ denotes the cardinality.		3
(c)	If $X = \{a, b, c\}$. Let $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}\$; $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}\$. Find the smallest topology containing τ_1 and τ_2 and the largest topology contained in τ_1 and τ_2 .		3
(d)	Let A be a connected subspace of X and $A \subset B \subset \overline{A}$, then show that B is also connected.		3
(e)	Show that no two spaces from (0, 1), (0, 1] and [0, 1] are homeomorphic.		3
(f)	Let (X, T) be a topological space, where $X = \{a, b, c\}$, $\Gamma = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}\}$ Find the closure and interior of A , where $A = \{a, c\}$.		3
	GROUP-B		

 $6 \times 4 = 24$

6

2.

1.

Answer any four questions from the following

Prove that $2^a = c$, where $|\mathbb{N}| = a$ and $|\mathbb{R}| = c$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/Revised & Old/2024

Let $f:(X, \Gamma_X) \to (Y, \Gamma_Y)$ be a mapping prove that the following are equivalent: 3. (i) f is continuous; (ii) $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$; (iii) for any closed set c

in Y, $f^{-1}(c)$ is closed in X.

- Show that $\beta = \{(a, b) : a, b \in \theta\}$ is a countable basis of \mathbb{R} . 6 4.
- Show that a topological space X is compact if and only if every collection of 6 5. closed sets in X satisfying the finite intersection property has a non-empty intersection.
- Show that if U is open, connected subset of \mathbb{R}^2 , then U is path connected. 6.
- Show that the product topology on $X \times Y$ is the weakest topology on $X \times Y$ 7. determined by the projection maps π_1 and π_2 .

GROUP-C

 $12 \times 2 = 24$ Answer any two questions from the following

6

7

5

3

6

- 8. (a) Prove that if X is an order set in which every closed interval is compact in the 6 order topology, then X has the least upper bound property.
 - (b) Let X, Y be topological spaces and Y be compact Hausdorff. Let $f: X \to Y$ be a 6 function. Show that f is continuous if and only if the graph of f

$$\Gamma_f = \{(x,\ f(x))\colon\, x\in X\}$$

is closed in $X \times Y$.

- 6 9. (a) Show that \mathbb{R}^n and \mathbb{R}^m can not be homeomorphic if $m \neq n$.
 - 6 (b) Is any infinite subset of \mathbb{R} compact with respect to discrete topology on \mathbb{R} ? Justify your answer with proper explanation.
- 10.(a) Let X be a compact Hausdorff space and let $\{A_n\}$ be a countable collection of closed sets in X. Show that if each set A_n has empty interior in X then the union A_n also has empty interior in X.
 - (b) Let Y be a subspace of X and A be a subset of Y. Let \overline{A} be the closure of A in X. Prove that the closure of A in Y is $\overline{A} \cap Y$.
- 11.(a) Let X_1, X_2, \dots, X_n be topological spaces. For each $k \in \{1, 2, \dots, n\}$, define the 3 k^{th} coordinate projection map π_k as follows

$$\pi_k: X_1 \times X_2 \cdots \times X_n \to X_k$$
 given by $\pi_k(x_1, x_2, \cdots, x_n) = x_k$

Show that the projection maps are open maps.

- (b) If a is a cardinal, then prove that $a \le a+1$.
- (c) Show that every compact subspace of a Hausdorff space is closed.

DSE-3B

LINEAR PROGRAMMING

GROUP-A

Answer any *four* questions from the following: 1...

 $3 \times 4 = 12$

(a) Make a graphical representation of the set of constraints in the following L.P.P.

3

$$Max Z = 2x_1 + x_2$$

Subject to
$$x_1 + 3x_2 \le 15$$

$$3x_1 - 4x_2 \le 12$$

$$x_1, x_2 \ge 0$$

and hence find the maximum value of the objective function by using moving hyperplane method.

(b) Prove that in E^2 , the set $X = \{(x, y): y^2 \le x\}$ is a convex set.

3

(c) Prove that a hyperplane is a convex set.

3

(d) Prove that $x_1 = 3$, $x_2 = 0$, $x_3 = 0$ is a feasible solution to the following set of equations

3

$$4x_1 + x_2 - 3x_3 = 12$$

$$6x_1 + 3/2x_2 + x_3 = 18$$

Is the solution basic? If so, which are the basic variables?

- 3
- (e) Prove that if the primal problem has feasible solution and dual has no feasible solution then the primal problem is said to have unbounded solution.
- 3
- (f) Find an initial basic feasible solution of the following transportation problem by cost minima method.

1	D_1	D_2	D_3	D_4	a_i
O_1	2.	1	3	4	30
O_2	3	2	1	4	50
O_3	5	2	3	8	20
b_{j}	20	40	30	10	

GROUP-B

Answer any four questions from the following

 $6 \times 4 = 24$

Prove that extreme points are finite in number.

Show that (2, 1, 3) is a feasible solution of the set of equations 3.

6

$$4x_1 + 2x_2 - 3x_3 = 1$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

Reduced it to a basic feasible solution of the system.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/Revised & Old/2024

4. Solve the following LPP by Simplex method:

Max
$$Z = 3x_1 + 5x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 \le 8$
 $2x_2 + 5x_3 \le 10$
 $3x_1 + 2x_2 + 4x_3 \le 15$
 $x_1, x_2, x_3 \ge 0$

5. Prove that in a balance Transportation problem having m origins and n 6 destinations $(m, n \ge 2)$ the exact number of basic variable is m + n - 1.

6

6

6

 $12 \times 2 = 24$

6. Find the optimal assignment for a problem with the following cost matrix

	M_1	M_2	M_3	M_4	M_5
J_1	8	4	2	6	1=
J_2	0	9	5	5	4
J_3	3	8	9	2	6
J_4	4	3	1	0	3
J_5	9	5	8	9	5

7. In a rectangular game the pay-off matrix is given by

 B_2 B_3 B_4 B_5 5 20 4 25 11 15 10 17 7 12 8 9 8 5 13 10

Find the value of the game.

GROUP-C Answer any *two* questions from the following

ove that the set of all convex	combinations of a finite number of points is a	6
nrior got		

(b) Solve the following L.P.P. by usual Simplex Method without using any artificial variable.

Minimize
$$Z = x_1 + x_2$$

Subject to $x_1 + 2x_2 \ge 12$
 $5x_1 + 6x_2 \ge 48$
 $x_1, x_2 \ge 0$

4

8. (a) Pro

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/Revised & Old/2024

9. (a) Prove that dual of the dual is the primal itself.

- 6
- (b) Obtain an optimal basic feasible solution to the following transportation problem.

ransportation problem.	6

	W_1	W_2	W_3	W_4	a_i
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
b_i	5	8	7	14	

10.(a) Solve by two-phase method:

Max
$$Z = 2x_1 + x_2 - x_3$$

Subject to $4x_1 + 6x_2 + 3x_3 \le 8$
 $3x_1 - 6x_2 - 4x_3 \le 1$
 $2x_1 + 3x_2 - 5x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

- (b) A vector is basic feasible solution of Ax = b if and only if it is an extreme point of the set $\{x : Ax = b, x \ge 0\}$.
- 6

5

- 11.(a) Prove that every two-person zero sum game can be converted to a L.P.P.
- 6
- (b) Solve the following game problem by reducing 2×2 problem using dominance property.
- 6

