

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2024

DSE-P3-MATHEMATICS

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

1.

Full Marks: 60

6

The figures in the margin indicate full marks.

The question paper contains DSE-3A and DSE-3B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

DSE-3A

POINT SET TOPOLOGY

GROUP-A

. Answer any <i>four</i> from the following questions:	$3 \times 4 = 12$
(a) Let $f: X \to Y$ be a continuous function and $\phi \neq A \subset X$. If $x \in \overline{A}$, does $f(x)$	3
necessarily belong to $\overline{f(A)}$? Justify your answer.	
(b) Let $F(X)$ be the collection of all finite subsets of X . If X is infinite, then prove that $ F(X) = X $, where $ \cdot $ denotes the cardinality.	e 3
(c) If $X = \{a, b, c\}$. Let $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}\$; $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}\$. Find the smallest topology containing τ_1 and τ_2 and the largest topology contained in τ_1 and τ_2 .	d 3 n
(d) Let A be a connected subspace of X and $A \subset B \subset \overline{A}$, then show that B is als connected.	о 3
(e) Show that no two spaces from (0, 1), (0, 1] and [0, 1] are homeomorphic.	3
(f) Let (X, T) be a topological space, where $X = \{a, b, c\}$,	3
$\Gamma = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}\}$	
Find the closure and interior of A, where $A = \{a, c\}$.	/
GROUP-B	
Answer any four questions from the following	$6 \times 4 = 24$

Prove that $2^a = c$, where $|\mathbb{N}| = a$ and $|\mathbb{R}| = c$.

2.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/Revised & Old/2024

- Let f:(X, Γ_X) → (Y, Γ_Y) be a mapping prove that the following are equivalent:
 (i) f is continuous; (ii) f(Ā) ⊂ f(Ā) for all A ⊂ X; (iii) for any closed set c in Y, f⁻¹(c) is closed in X.
 - 6

4. Show that $\beta = \{(a, b) : a, b \in \theta\}$ is a countable basis of \mathbb{R} .

6

6

- Show that a topological space X is compact if and only if every collection of closed sets in X satisfying the finite intersection property has a non-empty intersection.
- 7
- 6. Show that if U is open, connected subset of \mathbb{R}^2 , then U is path connected.
- 6
- 7. Show that the product topology on $X \times Y$ is the weakest topology on $X \times Y$ determined by the projection maps π_1 and π_2 .
- 6

GROUP-C

Answer any two questions from the following

- $12 \times 2 = 24$
- 8. (a) Prove that if X is an order set in which every closed interval is compact in the order topology, then X has the least upper bound property.
- 6
 - (b) Let X, Y be topological spaces and Y be compact Hausdorff. Let $f: X \to Y$ be a function. Show that f is continuous if and only if the graph of f
- 6

$$\Gamma_f = \{ (x, \ f(x)) : \ x \in X \}$$

is closed in $X \times Y$.

- 9. (a) Show that \mathbb{R}^n and \mathbb{R}^m can not be homeomorphic if $m \neq n$.
- 6
- (b) Is any infinite subset of $\mathbb R$ compact with respect to discrete topology on $\mathbb R$? Justify your answer with proper explanation.
- 6

7

- 10.(a) Let X be a compact Hausdorff space and let $\{A_n\}$ be a countable collection of closed sets in X. Show that if each set A_n has empty interior in X then the union $\bigcup_n A_n$ also has empty interior in X.
- (b) Let Y be a subspace of X and A be a subset of Y. Let \overline{A} be the closure of A in X. Prove that the closure of A in Y is $\overline{A} \cap Y$.
- 5
- 11.(a) Let X_1, X_2, \dots, X_n be topological spaces. For each $k \in \{1, 2, \dots, n\}$, define the k^{th} coordinate projection map π_k as follows

$$\pi_k: X_1 \times X_2 \cdots \times X_n \to X_k$$
 given by $\pi_k(x_1, x_2, \cdots, x_n) = x_k$

Show that the projection maps are open maps.

3

(b) If a is a cardinal, then prove that $a \le a + 1$.

6

(c) Show that every compact subspace of a Hausdorff space is closed.

DSE-3B

BOOLEAN ALGEBRA AND AUTOMATA THEORY

GROUP-A

1. Answer any *four* questions from the following:

 $3 \times 4 = 12$

(a) Design a DFA that accepts the language

$$L = \{x \in \{a, b\}^* : x \text{ ends with } aba\}.$$

(b) Describe in English the set accepted by the finite automata whose transition diagram.

- (c) Write the dual of each statement:
 - (i) $(a \land b) \lor c = (b \lor c) \land (c \lor a)$
 - (ii) $(a \land b) \lor a = a \land (b \lor a)$
- (d) Consider the strings $u = a^2ba^3b^2$ and $v = bab^2$. Find (i) uv (ii) v^2
- (e) Using Boolean algebra, show that

$$(x \cdot y)(x' \cdot z' + z) \cdot (x \cdot (z + y)') = 0$$

(f) For any two elements x, y in a lattice, let

$$[x, y] = \{a \in L : x \le a \le y\}$$

Show that [x, y] is a sublattice of L.

GROUP-B

2. Answer any *four* questions from the following:

 $6 \times 4 = 24$

(a) Let M be the NFA whose state diagram is given below:

6

Write down the transition table for this NFA. Also find L(M).

(b) Define alphabet, string and language. Write difference between deterministic finite automata and non-deterministic finite automata.

6

(c) In a distributive lattice (A, \leq) , if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some a, then show that x = y.

6

(d) For $\Sigma = \{a, b, c\}$, design a turning machine that accepts $L = \{a^n b^n c^n \mid n \ge 1\}$.

6

(e) Draw a switching circuit for the Boolean expressions

3+3

- (i) x(yz + y'z') + x'(yz + y'z + z'y)
- (ii) (x+y+z+u')(x+y'+u)+(x+z+y')x'

6

(f) Design a voting machine for four people in a committee in which a light glow when there is a majority vote in favour of a motion.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE3/Revised & Old/2024

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

6

3. (a) Find a deterministic automaton which accepts the same language as the non-deterministic automaton.

- (b) Find the prime implicants and a minimal sum-of-products form for each of the following sum of products Boolean expressions:
 - (i) $E_1 = xyz + xyz' + x'yz' + x'y'z$
 - (ii) $E_2 = xyz + xyz' + xy'z + x'yz + x'y'z$.
- 4. (a) Show that D_{30} is isomorphic to B_{31} where D_n denotes the set of all divisors of n and n is the set of n tuples whose members are either n or n. Can we say that n is a Boolean algebra? Justify.
 - (b) Design a DFA that accepts the following languages:

6

 $L_1 = \{x \in \{0, 1\}^* : x \text{ ends in } 001\}$ and

 $L_2 = \{x \in \{0, 1\}^* : x \text{ contains three consecutive 0's}\}$

5. (a) Find the Boolean expression that represents the circuit shown below:

6

6

Simplify if possible.

- (b) Prove that a lattice is non-modular iff it contains a sublattice isomorphic to N_5 .
- 6. (a) Let $G = (\{A_0, A_1, A_2, A_3\}, \{a, b\}, P, A_0)$; where P consists of $A_0 \to aA_0 \mid bA_1$, 6 $A_1 \to aA_2 \mid aA_3, A_3 \to a \mid bA_1 \mid bA_3, A_3 \to b \mid bA_0$. Construct an NDFA accepting L(G).
 - (b) Draw the Hasse diagram for the poset $(P(S), \subseteq)$, where P(S) is the power set of $S = \{1, 2, 3\}$.

____x___