

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2024

CC14-MATHEMATICS

PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

	GROUP-A	
8	Answer any four questions	$3 \times 4 = 12$
1.	Solve: $p \tan x + q \tan y = \tan z$	3
2.	Show that the following system of partial differential equations are compatible and hence find the common solution:	3
	$p = (e^y + 1)\cos x , q = e^y \sin x$	
3.	Form the PDE from the following by eliminating the constants:	3
	$z = (x^2 + a)(y^2 + b)$	
4.	Find the equations of the characteristics of the P.D.E.	- 3
	$\sin^2 x z_{xx} + 2\cos x z_{xy} - z_{yy} = 0$	
5.	Obtain a solution of the PDE $xp + yq = z$ representing a surface passing through	3
	the parabola $y^2 = 4x$, $z = 1$.	
6.	Find the degree of the following PDE:	3
æ	$\left(\frac{\partial^2 z}{\partial x^2}\right)^2 + 2\frac{\partial z}{\partial y} + \sin\left(\frac{\partial z}{\partial x}\right) = x^2 y$	
	Write down the relation between arbitrary constants independent variables and order of a PDE.	

GROUP-B

4	Answer any four questions	$6 \times 4 = 24$
7.	Reduce the following equation to a canonical form and hence solve it: $3z_{xx} + 10z_{xy} + 3z_{yy} = 0$	6
8.	Find the integral surface of the PDE $4yzp+q+2y=0$ and passing through $y^2+z^2=1$, $x+z=2$.	6
9.	A particle is projected along the inner surface of a smooth vertical circle of radius a , its velocity at the lowest point being $\frac{1}{5}\sqrt{95ag}$. Show that it will leave the circle at an	6
	angular distance $\cos^{-1}(3/5)$ from the highest point and its velocity is $\frac{1}{5}\sqrt{15ag}$.	

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC14/Revised & Old/2024

$$u_{tt} = 4u_{xx}, \quad -\infty < x < \infty, \quad t > 0$$

$$u(x, 0) = x, \quad u_{t}(x, 0) = \cos x$$

11. Solve:
$$y^2(x-y)p + x^2(y-x)q = z(x^2 + y^2)$$

12. Use Charpit's method to solve:
$$px + qy = pq$$

GROUP-C

Answer any two questions

 $12 \times 2 = 24$

6

6

6

- 13.(a) A particle of mass m moves under a central force $m\mu(3r^{-3}+2a^2r^{-5})$ being projected at a distance r = a with a velocity $\frac{\sqrt{5}\mu}{a}$ in a direction making an angle $\tan^{-1}\frac{1}{2}$ with the radius vector. Show that the equation of the path is $r = a \tan(\pi/4 \pm \theta)$.
 - (b) Solve by the method of separation of variables:

 $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$

14.(a) Solve the boundary value problem:

$$u_{tt} - c^2 u_{xx} = 0$$
, $0 \le x \le l$, $t \ge 0$

Subject to the conditions:

$$u(0, t) = u(l, t) = 0, \quad t \ge 0$$

$$u(x, 0) = 10\sin\left(\frac{\pi x}{l}\right), \quad 0 \le x \le l$$

$$u_t(x, 0) = 0$$

(b) Solve by Lagrange's method: $y^2p + x^2q = x^2y^2z^2$

6

6

6

- 15.(a) A particle oscillates in a cycloid under gravity, the amplitude of motion being b, and period being T. Show that its velocity at time t measured from a position of rest is $\frac{2\pi b}{T}\sin\frac{2\pi t}{T}$.
 - (b) The temperature distribution of a homogeneous thin rod, whose surface is 6

$$u_t = u_{xx}$$
, $0 < x < L$, $0 < t < \infty$

Subject to the conditions:

$$u(0, t) = u(L, t) = 0$$

 $u(x, 0) = f(x), 0 \le x \le L$

insulated is described by the following problem:

Find its formal solution.

- 16.(a) Find the integral surface of the linear PDE: $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$ which contains the straight line x + y = 0, z = 1.
 - (b) A particle moves in the curve $y = a \log \{\sec(x/a)\}\$ in such a way that the tangent to the curve rotates uniformly. Prove that the resultant acceleration of the particle varies as the square of the radius of curvature.