

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2024

CC13-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-II (REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A $3 \times 4 = 12$ Answer any four questions: 1. (a) Prove that in an Integral domain R, every prime element is irreducible. (b) Find the minimal polynomial of the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. (c) Find the dual basis of the basis $\beta = \{(1, 0, 1), (1, 2, 1), (0, 0, 1)\}$ of \mathbb{R}^3 . (d) Test for the diagonalizability of the matrix $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ in $M_2(\mathbb{R})$.

(e) Show that 1-i is irreducible in $\mathbb{Z}[i]$.

(f) If in an inner product space $\|\alpha + \beta\| = \|\alpha\| + \|\beta\|$ holds, prove that the vectors α and β are linearly dependent.

GROUP-B $6 \times 4 = 24$ Answer any four questions 2. (a) Show that the integral domain Z is Euclidean domain. 4+2 (b) Show that $\sqrt{-3}$ is a prime element in the integral domain $\mathbb{Z}[\sqrt{-3}]$. 3. (a) Use gram Schmidt process to obtain an orthogonal basis from the basis set 4+2 $\{(1, 1, 1), (1, 1, 1), (1, 3, 4)\}.$ (b) Let β be a basis for a finite dimensional inner product space. Prove that if $\langle x, z \rangle = 0$ for all $z \in \beta$, then x = 0.

Let R be a UFD and $f(x) \in R[x]$. Show that f(x) is irreducible over R if and 6 4. only if f(x+a) is irreducible over R for any $a \in R$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/Revised & Old/2024

- 5. Let W be a subspace of \mathbb{R}^4 spanned by $\alpha_1 = (1, 2, -3, 4)$, $\alpha_2 = (0, 1, 4, -1)$. Find the annihilator W^0 of W, and a basis of W^0 .
- 6. Prove that if k is a field, then k[x] is a Euclidean domain.
- 7. Each eigen value of a real orthogonal matrix has unit modulus. Explain.

GROUP-C

Answer any *two* questions $12 \times 2 = 24$

6

6

8. (a) Find the minimal polynomial of the matrix

 $\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 5
\end{pmatrix}$

- (b) Let V be a finite dimensional inner product space. If T and S are linear operators on V, then show that $(S+T)^* = S^* + T^*$ and $(T^*)^* = T$, where T^* is the adjoint of T.
- 9. (a) Show that $I = \{(a, 0) : a \in \mathbb{Z}\}$ is a prime ideal but not a maximal ideal of the ring $\mathbb{Z} \times \mathbb{Z}$.
 - (b) If P be a non-zero non-unit element in a PID R, then prove that the following statements are equivalent:
 - (i) P is a prime element in R.
 - (ii) P is an irreducible element in R.
 - (iii) $\langle P \rangle$ is a nonzero maximal ideal of R.
 - (iv) $\langle P \rangle$ is a nonzero prime ideal of R.
- 10.(a) Let T be a linear operator on \mathbb{R}^3 defined by T(a, b, c) = (a + b, b + c, 0). Show that xy-plane and the x-axis are T-invariant subspace of \mathbb{R}^3 .
 - (b) Let $T:V\to V$ be a linear mapping and $\lambda\in F$ be an eigen value of T. Then prove that $V_{\lambda}=\{v\in V:\ T_{\nu}=\lambda V\}$ is a subspace of V.
- 11.(a) Let V and W be vector spaces, and let S be a subset of V.

 Define $S^0 = \{T \in L(V, W) : T(\alpha) = \theta, \forall \alpha \in S\}$.

Prove the following:

- (i) If S_1 and S_2 are subset of V and $S_1 \subseteq S_2$, then $S_2^0 \subseteq S_1^0$.
- (ii) If V_1 and V_2 are subspaces of V, then $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$.
- (b) Prove that 2+11i and 2-7i are relatively prime in the integral domain $\mathbb{Z}[i]$.

____×___