

UNIVERSITY OF NORTH BENGAL

B.Sc. Major 2nd Semester Examination, 2024

UMATMAJ12002-MATHEMATICS

CALCULUS AND GEOMETRY

Time Allotted: 2 Hours 30 Minutes

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any *four* questions:

 $3 \times 4 = 12$

(a) If $\lim_{x\to 0} \frac{\sin 2x + a \sin x}{x^3}$ be finite, find the value of a and the limit.

3

(b) Determine the values of h and g so that the equation

3

 $x^2 - 2hxy + 4y^2 + 2gx - 12y + 9 = 0$

may represent a conic having no centre.

(c) What does the equation $11x^2 + 16xy - y^2 = 0$ become when the axes are rotated through an angle $\tan^{-1}(1/2)$?

.3

(d) Find the asymptotes of the curve $y = \log(x-1)$.

3

(e) If $I_n = \int_0^{\pi/2} \sin^n x \, dx$, where *n* is a positive integer, then prove that $I_n = \frac{n-1}{n} I_{n-2}$ for n > 2.

3

(f) Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 25$, x + 2y - z + 2 = 0 and the point (1, 1, 1). Also find its centre and radius.

3

GROUP-B

2. Answer any *four* questions:

 $6 \times 4 = 24$

- (a) If $y = \sin(m\sin^{-1}x)$, show that $(1-x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$. Hence find $y_n(0)$.
- (b) Reduce the equation

6

6

$$x^{2} + y^{2} + z^{2} - 2xy - 2yz + 2zx + x - 4y + z + 1 = 0$$

to its canonical form and determine the type of the quadric represented by it.

FYUGP/B.Sc./MAJ/2nd Sem./UMATMAJ12002/2024

(c) If m is a positive integer, then prove that

$$\int_{0}^{\pi/2} \cos^{m} x \sin x \, dx = \frac{1}{2^{m+1}} \left[2 + \frac{2^{2}}{2} + \frac{2^{3}}{3} + \dots + \frac{2^{m}}{m} \right]$$

- (d) Show that the straight line $r\cos(\theta \alpha) = p$ touches the conic $\frac{l}{r} = 1 + e\cos\theta$, if $(l\cos\alpha ep)^2 + l^2\sin^2\alpha = p^2$.
- (e) Find the volume of the solid formed by revolving one loop of the curve $r^2 = a^2 \cos 2\theta$ about the line $\theta = \pi/2$.
- (f) A plane passes through a fixed point (p, q, r) and cut the axes at A, B, C. Show that the locus of the centre of sphere OABC is $\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$, where O is the origin.

GROUP-C

Answer any two questions

 $12 \times 2 = 24$

- 3. (a) Find the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to the centre as pole.
 - (b) Find the envelope of the family of circles whose centre lie on the rectangular hyperbola $xy = c^2$ and pass through the centre of the hyperbola.
- 4. (a) Show that the plane 6x + 4y + 3z 12 = 0 intersects the hyperboloid $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{16} = 1$ in two generators.
 - (b) If PSP' and QSQ' be any two perpendicular focal chords of a conic, then prove that $\frac{1}{SP \cdot SP'} + \frac{1}{SQ \cdot SQ'} = a$ constant.
- 5. (a) Let ρ_1 and ρ_2 be the radii of curvature at the ends P and Q of conjugate diameters CP and CQ respectively, of the ellipse $(x^2/a^2) + (x^2/b^2) = 1$. Show that $\rho_1^{2/3} + \rho_2^{2/3} = (a^2 + b^2)/(ab)^{2/3}$, where C is the centre of the ellipse.
 - (b) Prove that the area common to the circles $r = a\sqrt{2}$ and $r = 2\cos\theta$ is $a^2(\pi 1)$.
- 6. (a) Find the equation of the cylinder which passes through the point (3, -1, 1) and has the axis $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{1}$.
 - (b) Find the equation of the generating lines of the hyperboloid $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{16} = 1$ passing through the point (2, -1, 4/3).

2019