

UNIVERSITY OF NORTH BENGAL

B.Sc. Major 1st Semester Examination, 2024

MATHMAJ101-MATHEMATICS

CLASSICAL ALGEBRA AND MATRIX THEORY

Time Allotted: 2 Hours 30 Minutes

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

				0 4 10
	1.		Answer any four questions:	$3 \times 4 = 12$
		(a)	Find two integers u and v satisfying $54u + 24v = 30$.	3
			$\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$	
		(b)	Find all real values of α for which the rank of the matrix $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & \alpha \\ 5 & 7 & 1 & \alpha^2 \end{pmatrix}$	3
			is 2.	
		(c)	Find the remainder on division of 17 ¹⁷ by 8.	3
		(d)	Find the solution of the equation $1^z = 2$.	3
1		(e)	Check if $a^k \equiv b^k \pmod{m}$ imply $a \equiv b \pmod{m}$.	3
		(f)	Find the number of real roots of the equation $x^4 - 6x^3 + 10x^2 - 6x + 1 = 0$.	3
			GROUP-B	
	72.		Answer any four questions	$6 \times 4 = 24$
w	2.	2	Prove that the equation $x^n - qx^{n-m} + r = 0$ has two equal roots if	6
			$\left\{\frac{q}{n}(n-m)\right\}^n = \left\{\frac{r}{m}(n-m)\right\}^m$	* * * * * * * * * * * * * * * * * * *
	3.		For distinct positive integers a, b, c, d show that	6
			$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} > 4$	
			$\begin{pmatrix} x & -1 & -1 \end{pmatrix}$	
	4.		Find the rank of $\begin{pmatrix} x & -1 & -1 \\ -1 & x & -1 \\ -1 & -1 & x \\ 1 & 1 & 1 \end{pmatrix}$ when $x \neq -1$ and when $x = -1$.	6
	5.		Find the roots of the equation $x^3 - 3x + 1 = 0$.	6

Find the characteristic equation of the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 1 \\ 3 & 5 & 6 \end{pmatrix}$ and show that 6. the matrix A satisfies its characteristic equation. State the fundamental theorem of arithmetic. Prove that the eighth power of any 7. integer is of the form 17k or $17k \pm 1$ where k is a positive integer. **GROUP-C** Answer any two questions $12 \times 2 = 24$ 8. (a) Solve the equation $2x^4 + 6x^3 - 3x^2 + 2 = 0$ by Ferrari's method. (b) Let A and B be two real orthogonal matrices of same order and det $A + \det B = 0$. Show that A + B is singular. 9. (a) Solve the system of linear congruence $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{5}, x \equiv 3 \pmod{7}$ (b) If P and Q are non-singular matrices, show that $\begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}^{-1} = \begin{pmatrix} P^{-1} & 0 \\ 0 & Q \end{pmatrix}^{-1}$ 6 10.(a) If $\lambda \neq 0$ is an eigen value of a nonsingular matrix A then show that $\frac{1}{4}$ is an eigen 3 value of A^{-1} . (b) If λ_1 and λ_2 are two distinct eigen values of a real symmetric 3×3 matrix and 4 v_1 , v_2 are eigen vectors corresponding to λ_1 and λ_2 then find scalar product of v_1 and v_2 . (c) Show that $AM \ge GM \ge HM$. When are they equal? 4+1 11.(a) Prove that any nonempty subset of the set of natural numbers has a least element. 6

-4x + 2y - 9z = 2, 3x + 4y + z = 5, $3x + 4y + \lambda z = \mu$

has (i) no solution (ii) a unique solution and (iii) infinitely many solutions over

(b) For what values of λ and μ the following system of equations

the field of rational numbers.