

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2024

CC3-MATHEMATICS

REAL ANALYSIS

(REVISED SYLLABUS 2023 AND OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1.		Answer any <i>four</i> questions:	$3 \times 4 = 12$
	(a)	Prove that the intersection of a finite number of open sets in \mathbb{R} is an open set.	3
	(b)	Show that $\left\{\frac{3n+1}{n+2}\right\}$ is a bounded sequence.	3
	(c)	Two real numbers a and b are such that for all $\varepsilon > 0$, $ a-b < \varepsilon$ holds. Show that $a = b$.	3
	(d)	Show that Z is an enumerable set.	3
	(e)	Examine the convergence of the series $x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots$, $x > 0$.	3
	(f)	Give an example of an open cover of the set (0, 1) which does not have a finite sub-cover with explanation.	3
		GROUP-B	
		Answer any four questions	6×4 = 24
2.	4	State and prove Bolzano-Weierstrass' theorem for subsets of R.	6
3.		Test the convergence of the series $\frac{1}{4} + \left(\frac{1}{4}\right)^{1+\frac{1}{3}} + \left(\frac{1}{4}\right)^{1+\frac{1}{3}+\frac{1}{5}} + \cdots$.	6
4.		Show that finite union of compact subset of \mathbb{R} is compact.	6
5.		State Sandwich Theorem. Show that the sequence $\{u_n\}$ converges to 0 where $u_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}$	6

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC3/Revised & Old/2024

- If $\{S_n\}$ is a sequence such that $S_{n+1} = \sqrt{\frac{ab^2 + S_n^2}{a+1}}$, b > a, $\forall n \ge 1$ and $S_1 = a > 0$. 6. 6 Then show that the sequence $\{S_n\}$ is an increasing bounded above sequence and $\lim_{n\to\infty} S_n = b.$
- 7. 1+4+1

Define open set. Prove that union of finite number of open sets is an open set. Is the union of an arbitrary collection of open sets is open? **GROUP-C** Answer any two questions 8. (a) Show that finite product of enumerable sets is enumerable. Also show that 4+4 enumerable product of finite sets may not be enumerable. (b) A sequence $\{x_n\}$ is such that every subsequence of $\{x_n\}$ has a subsequence that 4 converges to 0. Show that $\lim x_n = 0$. 9. (a) Show that the set of all real numbers in the closed interval [0, 1] is not countable. 6 (b) Show that a derived set is always closed. 4 (c) Find $\overline{\lim} u_n$ and $\underline{\lim} u_n$, where $u_n = \frac{n}{4} - \left| \frac{n}{4} \right|$ 1 + 110.(a) Let $S \subset \mathbb{R}$ be non-empty. For $a \in \mathbb{R}$, define $d(a, S) = \inf\{|a - x| : x \in S\}$. Show 4 that $a \in \overline{S}$ iff d(a, S) = 0. (b) What is completeness property of \mathbb{R} ? 2 (c) Let $S = \left\{ \frac{1}{2^m} + \frac{1}{2^n} : m, n \in \mathbb{N} \right\}$. Find the derived set of S. 6 11.(a) If $\{x_n\}$ is a sequence of positive real numbers converges to l, then show that 3 $\lim_{n\to\infty} \sqrt[n]{x_1 \, x_2 \cdot \dots \cdot x_n} = l$ (b) Test the convergence of the series $1 + \frac{2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^3x^3}{4!} + \cdots$

(c) State and prove Leibnitz's test for convergence of an alternating series. 5