

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2024

CC2-MATHEMATICS

ALGEBRA

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Full Marks: 60 Time Allotted: 2 Hours

The figures in the margin indicate full marks.

GROUP-A

 $3 \times 4 = 12$ Answer any four questions: 1. (a) If $x^3 + 3px + q$ has a factor of the form $(x - \alpha)^2$, then show that $q^2 + 4p^3 = 0$. 3 (b) If $a_1 < a_2 < \cdots < a_n$ be *n* positive real numbers, show that 3 $a_1 < \frac{a_1^2 + \dots + a_n^2}{a_1 + \dots + a_n} < a_n$ (c) Check the consistency of the system of linear equations: 3 x - 2y + 2z = 12x + y - z = 25x + 5y - 5z = 6(d) Apply Descartes' rule of signs to ascertain the minimum number of complex 3 roots of the equation $x^7 - 3x^3 + x^2 = 0$. 3 (e) Find the product of all the values of $(1+i)^{4/5}$. (f) Find the rank of the matrix $A = \begin{pmatrix} 1 & -2 & -1 \\ -1 & 2 & 1 \end{pmatrix}$. 3 **GROUP-B** $6 \times 4 = 24$ Answer any four questions Solve the biquadratic equation by Ferrari's method: $x^4 + 2x^3 - 7x^2 - 8x + 12 = 0$

2. Solve the biquadratic equation by Ferrari's method:
$$x^4 + 2x^3 - 7x^2 - 8x + 12 = 0$$

3. If
$$x = \log \tan(\pi/4 + \theta/2)$$
, where θ is real, prove that, $\theta = -i \log \tan(\pi/4 + ix/2)$.

4. If
$$\lambda \neq -14$$
, then prove that the system of equations:

$$5x + 2y - z = 1$$
$$2x + 3y + 4z = 7$$
$$4x - 5y + \lambda z = \lambda - 5$$

has a unique solution at (0, 1, 1).

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC2/Revised & Old/2024

- 5. If a_1, a_2, \dots, a_n and t_1, t_2, \dots, t_n be two list of real numbers, then show that $(a_1t_1 + a_2t_2 + \dots + a_nt_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(t_1^2 + t_2^2 + \dots + t_n^2)$ and the equality holds when $\frac{a_1}{t_1} = \frac{a_2}{t_2} = \dots = \frac{a_n}{t_n}$.
- 6. Find the equation whose roots are the squared differences of the roots of the cubic equation $x^3 13x 12 = 0$.
- 7. Find a non-singular matrix P such that P^TAP is the normal form of A under congruence, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Also find the rank, index and signature of P.

GROUP-C

Answer any two questions

 $12\times2=24$

- 8. (a) Expand, with the help of De Moivre's theorem, $\cos 7\theta$ in terms of $\cos \theta$. 6+6
 - (b) If $\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ and if p is prime to n, prove that $1 + \alpha^p + \alpha^{2p} + \dots + \alpha^{(n-1)p} = 0$
- 9. (a) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\left(\frac{1}{\beta} + \frac{1}{\gamma} \frac{1}{\alpha}\right) \left(\frac{1}{\gamma} + \frac{1}{\alpha} \frac{1}{\beta}\right) \left(\frac{1}{\alpha} + \frac{1}{\beta} \frac{1}{\gamma}\right)$
 - (b) If 1, α_1 , α_2 ,, α_{n-1} be n distinct roots of the equation $x^n 1 = 0$, then prove that $(1 \alpha_1)(1 \alpha_2) \cdot \cdot \cdot \cdot (1 \alpha_{n-1}) = n$
 - (c) Prove that the roots of the equation $\frac{1}{x-1} + \frac{2}{x-2} + \frac{3}{x-3} = x$ are all real.
- 10.(a) Determine the conditions on a and b, for which the system of equations x + 2y + z = 1 2x + y + 3z = b x + ay + 3z = b + 11. (i) a solution (ii) no solutions

has (i) a unique solution, (ii) no solution, (iii) many solutions.

- (b) Use Cayley Hamilton Theorem to find the inverse of $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}$.
- 11.(a) For distinct real numbers a, b, c with a+b+c=1, prove that $8abc < (1-a)(1-b)(1-c) < \frac{8}{27}$
 - (b) Consider the subset $A = \{x \in \mathbb{R}: 0 < x < 1\}$ of \mathbb{R} . If a mapping $f: A \to \mathbb{R}$ is defined by $f(x) = \frac{2x-1}{1-|2x-1|}$, $x \in A$, then show that f is bijective.
 - (c) If n > 1 be a positive integer, prove that $(n+1)^{n-1}(n+2)^n > 3^n(n!)^2$.

___X-__