

'समानो सन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2024

CC11-MATHEMATICS

GROUP THEORY-II

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Ful) Marks: 60

The figures in the margin indicate full marks.

GROUP-A

١.		Answer any four questions:	3×4 =	12
	(a)	Find all Sylow 2-subgroups of S_3 .		3
	(b)	For a group G if $f: G \to G$, defined by $f(x) = x^2, \forall x \in G$, is an automorphism, does it imply that G is commutative.		3
	(c)	Let G be a group and S be a G-set. Show that $\forall a \in S$, the subset $G_a = \{g \in G ; ga = a\}$ is a subgroup of G.		3
	(d)	Find the number of elements of order 7 in $\mathbb{Z}_4 \times \mathbb{Z}_7$.		3
		Let G be a finite group that has only two conjugate classes. Show that order of the group G is 2.		3
	(f)	Show that $Inn(G)$ is subgroup of $Aut(G)$, where G is a group.		3
		GROUP-B		
		Answer any four questions	6×4 =	24
2.	9	Let G be a simple group of order 168. Find the number of subgroups of order 7.		6
3.		Let G be a finite group and S be a G-set. Prove that $ S = \sum_{a \in A} [G:G_a]$, where A is		6
		a subset of S containing exactly one element from each orbit $[a]$.		
4.		State and prove Sylow's Third Theorem.		6
5	. (a)	Prove that if G is a finite group, then G is a p-group iff $O(G) = p^n$ for some non-negative integer n.	11	4+·2
	(b)	Write down the class equation of S_3 .		

- Show that for any prime p, there exists only two non-isomorphic groups of order p^2 . 6.
- 6 7. Find Aut (K_4) and Aut (\mathbb{Z}_4) .

GROUP-C

Answer any two questions

 $12 \times 2 = 24$

- 8. (a) Show that any group of order pq where p, q are primes, p > q and q does not divide p-1, is cyclic.
- 646
 - (b) Show that a group of prime order must always have a non-trivial centre.
- 9. (a) Let $S = \{x_1 x_2 x_3 \cdots x_n; n \ge 1, \text{ each } x_i \text{ is a commutator in } G\}$ be the collection 6+6 of all finite products of commutators of a group G. Show that S is a normal subgroup of G.
 - (b) Show that $| \text{Aut} (\mathbb{Z}_2 \times \mathbb{Z}_2) | = 6$.
- 10.(a) Prove that no group of order 30 is simple.

4+4+4

- (b) Let H be a normal subgroup of a group G. Define $\sigma: G \times H \to H$ by $\sigma(g,h) = ghg^{-1} \ \forall (g,h) \in G \times H$. Prove that σ defines an action of G on H.
- (c) Prove that $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic iff gcd(m, n) = 1. Is $\mathbb{Z} \times \mathbb{Z}$ cyclic? Justify your answer.
- 11.(a) Find all the abelian groups of order 360.

4+6+2

- (b) Show that there exists only two groups of order 4 upto isomorphism.
- (c) State Index Theorem.