

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2024

CC1-MATHEMATICS

CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION (OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

 $3 \times 4 = 12$ Answer any four questions from the following: 1. (a) Find asymptotes, if any of the curve $y = \frac{5x}{x-3}$ (b) Find envelope of the curve $y = m^2x + \frac{1}{m^2}$ 3 (c) Evaluate $\int \sin^4 x \cos^2 x \, dx$. 3 (d) Through what angle must the axes be turned to remove the term x^2 from $x^2 - 4xy + 3y^2 = 0$? (e) Find k such that the equation $kx^2 + 4xy + y^2 - 6x - 2y + 2 = 0$ may represent a 3 point ellipse. (f) Find the length of the arc of the parabola $y^2 = 16x$ measured from the vertex to 3 an extremity of the latus rectum.

GROUP-B

2. Answer any four questions from the following: 6×4 = 24
(a) Find the surface area of the solid generated by revolving the cycloid x = a(θ - sin θ), y = a(1 - cos θ).
(b) If y = a cos(log x) + b sin(log x), show that x²y_{n+2} + (2n+1)xy_{n+1} + (n²+1)y_n = 0.
(c) Find the envelope of the family of ellipses x²² + y² / b² = 1, where parameters a and b are connected by ab = c², c being a constant.
(d) If ax + by and cx + dy are changed to a'x' + b'y' and c'x' + d'y' respectively from rotation of axes, show that ad - bc = a'd' - b'c'.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC1/Revised & Old/2024

- (e) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 2x 4y + 2z + 5 = 0$, x 2y + 3z + 1 = 0 is a great circle.
- (f) Find the general and singular solution (if it exists) of $16x^2 + 2p^2y p^3x = 0$, where $p = \frac{dy}{dx}$.

GROUP-C

3. Answer any *two* questions from the following:

 $12 \times 2 = 24$

(a) (i) Reduce the equation $x^2 - 2xy + 2y^2 - 4x - 6y + 3 = 0$ to its canonical form and state the nature of the conic.

(ii) Obtain the equation of the cylinder whose generators intersect the ellipse $9x^2 + 3y^2 = 1$, z = 0 and are parallel to the straight line with direction ratios 1, -1, 1.

6

(b) (i) Show that the straight line $r\cos(\theta - \alpha) = p$ touches the conic $\frac{l}{r} = 1 + e\cos\theta$, if $(l\cos\alpha - ep)^2 + l^2\sin^2\alpha = p^2$.

6

(ii) Find all the asymptotes of the curve $4x^3 - 3xy^2 - y^3 + 2x^2 - xy - y^2 - 1 = 0$.

6

(c) (i) Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x}$.

6

(ii) If $I_{m,n} = \int_{0}^{\frac{\pi}{2}} \cos^{m} x \sin nx \, dx$ show that $I_{m,n} = \frac{1}{m+n} + \frac{m}{m+n} I_{m-1, n-1}$ and hence deduce $I_{m,m} = \frac{1}{2^{m+1}} \left[2 + \frac{2^{2}}{2} + \frac{2^{3}}{3} + \dots + \frac{2^{m}}{m} \right]$.

6

(d) (i) Solve: $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$

6

(ii) Solve: $(x^2 + y^2 + 4)x dx + (x^2 - y^2 + 9)y dy = 0$

6

____×