

UNIVERSITY OF NORTH BENGAL

B.Sc. Major 1st Semester Examination, 2023

UMATMAJ11001-MATHEMATICS

CLASSICAL AND LINEAR ALGEBRA

Time Allotted: 2 Hours 30 Minutes

Answer any four questions:

(b) Find the real part of $(1+i\sqrt{3})^{1+i}$.

(c) Prove that $n! > n^{\frac{h}{2}} (n > 1)$.

1..

Full Marks: 60

3

3

3

The figures in the margin indicate full marks.

GROUP-A

(a) Find the conditions that the roots of the equation $x^3 - px^2 + qx - r = 0$ are in G.P.

	(d)	Applying Descarte's rule of signs, find the nature of the roots of the equation	3
		$x^6 + x^4 + x^2 + x + 3 = 0$	
	(e)	If the amplitude of the complex number $\frac{z-1}{z+1}$ is $\frac{\pi}{4}$, show that z lies on a fixed	3
		circle with centre i.	
		$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$	
	(f)	Find the characteristic equation and eigenvalues of the matrix $\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.	3
		$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix}$	
		GROUP-B	
2.		Answer any four questions:	$6 \times 4 = 24$
	(a)	Find the range of values of k for which the equation $x^4 - 26x^2 + 48x - k = 0$ has four unequal roots.	6
	(b)	Solve the equation $x^3 - 6x - 4 = 0$ by Cardan's method.	6
	` ′	If $a, b, c, d > 0$ and $a+b+c+d=1$, prove that	6
		$\frac{a}{1+b+c+d} + \frac{b}{1+a+c+d} + \frac{c}{1+a+b+d} + \frac{d}{1+a+b+c} \ge \frac{4}{7}$	
	(d)	If $u + iv = \tan(x + iy)$, then show that	6
		(i) $u^2 + v^2 = 1 - 2u \cot 2x$; (ii) $u^2 + v^2 + 2v \left\{ \frac{e^{-2y} + e^{2y}}{e^{-2y} - e^{2y}} \right\} + 1 = 0$	
	(e)	Show that eigenvalues of a real symmetric matrix are all real.	6
	(f)	Determine the conditions for which the system of Linear equations:	6
	(1)		
		x+2y+z=1 $2x+y+3z=b$ $x+ay+3z=b+1$	

Has (i) only one solution, (ii) no solution, (iii) many solutions.

FYUGP/B.Sc./MAJ/1st Sem./UMATMAJ11001/2023

GROUP-C

3. Answer any two questions:

 $12 \times 2 = 24$

- (a) (i) Solve the equation $x^4 5x^3 + 11x^2 13x + 6 = 0$, given that two of its roots α and β are connected by the relation $3\alpha + 2\beta = 7$.
 - (ii) If α , β , γ be the roots of $x^3 + px^2 + qx + r = 0$ find the equation whose roots are $\frac{\alpha}{\beta + \gamma}$, $\frac{\beta}{\gamma + \alpha}$, $\frac{\gamma}{\alpha + \beta}$
- (b) (i) Let n be a positive integer. Prove that

4

6

$$\frac{1}{\sqrt{4n+1}} < \frac{3 \cdot 7 \cdot 11 \cdot \dots \cdot (4n-1)}{5 \cdot 9 \cdot 13 \cdot \dots \cdot (4n+1)} < \sqrt{\frac{3}{4n+3}}$$

(ii) If a, b, c are positive real numbers and $abc = k^3$, prove that

..3

$$(1+a)(1+b)(1+c) \ge (1+k)^3$$

(iii) Using Strum's theorem, find the subintervals of (-4, 3) in which the roots of equation $x^4 - 12x^2 + 12x - 3 = 0$ lie.

5

(c) (i) State Cayley-Hamilton theorem. Using this theorem, find A^{-1} , where

1+5

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}$$

(ii) Examine if the matrices A and B are congruent, where

6

$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix} , B = \begin{pmatrix} 3 & 4 & 1 \\ 4 & 9 & 4 \\ 1 & 4 & 2 \end{pmatrix}$$

(d) (i) For the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ -1 & 1 & 2 \end{pmatrix}$, find non-singular matrices P and Q

such that PAQ is the fully reduced normal form.

(ii) If λ is an eigenvalue of a non-singular matrix A, then prove that λ^{-1} is an eigenvalue of A^{-1} .

(iii) Find row-equivalent row-reduced echelon matrix to the matrix.

- 4

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & 2 & 1 & 5 \\ 1 & 3 & -1 & 0 \\ 1 & 7 & -4 & 1 \end{bmatrix}$$

and hence find its rank.