

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2023

DSE-P1-MATHEMATICS

(REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains DSE1A and DSE1B. Candidates are required to answer any *one* from the *two* DSE1 courses and they should mention it clearly on the Answer Book.

DSE1A

PROBABILITY AND STATISTICS

GROUP-A

Answer any four questions:

 $3 \times 4 = 12$

- (a) If two events A and B are such that $P(A+B) = \frac{3}{4}$, $P(AB) = \frac{1}{4}$, $P(\overline{A}) = \frac{2}{3}$, then find $P(\overline{A}B)$.
- (b) Show that Tchebycheff's inequality that in 2000 throws with a coin, the probability that the number of heads lies between 900 and 1100 is at least $\frac{19}{20}$.
- (c) State weak law of large numbers.
- (d) Let T_1 and T_2 be two unbiased estimators of the parameter θ . Under what condition $aT_1 + bT_2$ will be an unbiased estimator of θ ?
- (e) Find the characteristic function of a Binomial distribution with parameters n and p.
- (f) Let X be a random variable following Poisson distribution. If P(X = 1) = P(X = 2), find E(X).

CROUP.R

2. Answer any four questions:

 $6 \times 4 = 24$

3+3

(a) From a pack of 52 cards, an even number of cards is drawn. Show that the probability that these consist of half of red and half of black is

$$\frac{\left[\frac{52!}{(26!)^2} - 1\right]}{(2^{51} - 1)}$$

- (b) Find the maximum likelihood estimate of the parameter λ of a continuous population having the density function $f(x) = \lambda x^{\lambda 1}$, 0 < x < 1, $\lambda > 0$.
- (c) (i) Prove that the second order moment of a random variable X is minimum when taken about its mean.
 - (ii) If X_1, X_2, \dots, X_n be a set of mutually independent random variables having characteristic functions $\chi_1(t), \chi_2(t), \dots, \chi_n(t)$ respectively, prove that the characteristic function $\chi(t)$ of their sum S_n is given by $\chi(t) = \chi_1(t) \cdot \chi_2(t) \cdot \dots \cdot \chi_n(t)$.

Turn Over

- (d) If m and μ_r denote the mean and central r-th moment of a Poisson distribution, then prove that $\mu_{r+1} = rm\mu_{r-1} + \frac{md\mu_r}{dm}$.
- (e) If $a(\neq 0)$, $c(\neq 0)$, b, d are constants, prove that $\rho(aX + b, cY + d) = \frac{ac \rho(X, Y)}{|a||c|}$.
- (f) If X_1, X_2, \dots, X_n are mutually independent random variables and each X_i has uniform distribution over the interval (a, b), then find the density function of the random variable U, given by $U = \min\{X_1, X_2, \dots, X_n\}$.

GROUP-C

3. Answer any two questions:

- A drug is given to 10 patients, and the increments in their blood pressure were recorded to be 3, 6, -2, 4, -3, 4, 6, 0, 0, 2. Is it reasonable to believe that the drug has no effect on the change of blood pressure? Test at 5% significance level, assuming the population to be normal.
 - (ii) The joint density function of the random variable X, Y is given by f(x, y) = 2 (0 < x < 1, 0 < y < x)

5

Find the marginal and conditional density functions.

Compute $P\left(\frac{1}{4} < X < \frac{3}{4} \mid Y = \frac{1}{2}\right)$.

The joint probability density function of two random variable X and Y is (b) (i)

$$f(x, y) = 8xy$$
, $0 \le x \le y$, $0 \le y \le 1$
= 0, otherwise

Examine whether X and Y are independent. Also compute var(X) and var(Y).

(ii) Let X be a random variable having Poisson distribution with parameter λ . Show that the moment generating function (mgf) of $Z = \frac{X - \lambda}{\sqrt{\lambda}}$ converges to the mgf of the standard normal distribution when $\lambda \to \infty$.

6

- Let p denotes the probability of getting a head when a given coin is tossed once. Suppose that the hypothesis $H_0: p = 0.5$ is rejected in favour of $H_1: p = 0.6$ if 10 trials result in 7 or more heads. Calculate the probabilities of type I and type II errors.
 - If X is a continuous random variable, prove that the first absolute moment of X is minimum when taken about the median.

6

(d) (i) A random variable X has a density function f(x) given by

 $f(x) = e^{-x}$, $x \ge 0$

Show that Tchebycheff's inequality gives $P(|X-1| \ge 2) \le \frac{1}{4}$ and show that the actual probability is e^{-3} .

- (ii) The integers x and y are chosen at random with replacement from the nine integers 1, 2, 3, ..., 8, 9. Find the probability that $|x^2 - y^2|$ is divisible by 2.
- (iii) State Central limit theorem for independent and identically distributed (i.i.d) random variables with finite variance.

2

DSE1B DIFFERENTIAL GEOMETRY

GROUP-A

Answer any four questions from the following: 1.

 $3 \times 4 = 12$

(a) Define unit speed curve. Show that the curve

$$\gamma(t) = \left(\frac{1}{3}(1-t)^{3/2}, \frac{1}{3}(1+t)^{3/2}, \frac{t}{\sqrt{2}}\right)$$
 is unit speed regular.

- (b) Define orientable surface with an example.
- (c) Define atlas of a surface. Write down an atlas of unit sphere.
- (d) Find the arc length of the curve $\gamma(t) = (t, \cosh t)$ starting at the point (0, 1).
- (e) Define the reparametrization of a curve. Find the reparametrization of the curve. $\gamma(t) = \left(\frac{2\cos t}{1+\sin t}, 1+\sin t\right) \qquad \text{for } -\frac{\pi}{2} < t < \frac{\pi}{2}$

$$\gamma(t) = \left(\frac{2\cos t}{1+\sin t}, 1+\sin t\right) \qquad \text{for } -\frac{\pi}{2} < t < \frac{\pi}{2}$$

Answer any four questions from the following: 2.

 $6 \times 4 = 24$

- (a) Find the curvature of the curve $\gamma(t) = (t \cosh t \sinh t, 2 \sinh t)$
- (b) Calculate the first fundamental form of the surface $\sigma(u, v) = (\cosh u \cos v, \sinh u \sin v, u)$
- (c) Find the evolute of the ellipse $\gamma(t) = (a \cos t, b \sin t)$, where a > b > 0 are constants.
- (d) Prove that a diffeomorphism $f: S_1 \to S_2$ is an isometry if and only if, for any surface patch σ_1 of S_1 , the patches σ_1 and $f \cdot \sigma_1$ of S_1 and S_2 respectively have the same first fundamental form.
- (e) Prove that a parametrized curve has a unit-speed reparametrisation if and only if it is regular.
- (f) For the surface, $\sigma(u, v) = (\frac{u+v}{2}, \frac{v-u}{2}, uv)$,
 - (i) Find the asymptotic curve on it.
 - (ii) Calculate the normal curvature of the curve $\gamma(t) = (t^2, 0, t^4)$ on the above surface.

GROUP-C

Answer any two questions from the following: 3.

 $12 \times 2 = 24$

(a) State Frenet-Serret equations. Compute k, τ , t, n and b for the curve

$$\gamma(t) = \left(\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t\right)$$

Also verify the Frenet-Serret equations.

State Gauss-Bonnet theorem for simple closed curve.

2

(ii) Define minimal surface. Prove that the surface $\sigma(u, v) = (\cosh u \cos v, \cosh u \sin v, u)$ is a minimal surface. 1+9

Define principal curvature and principal tangent vector. Prove that if k_1 and k_2 be the principal curvatures at a point of a surface then k_1 and k_2 are both reals.

2+4

Find the principal curvature and corresponding principal tangent vector for the circular cylinder of radius 1 and axis z-axis represented by $\gamma(t) = (\cos v, \sin v, u)$

6

Define Gaussian curvature at a point on a surface.

1 3

(ii) Prove that Gaussian-curvature $K = \frac{LN - M^2}{EG - F^2}$, where E, F, G and L, M, N are respectively first and second fundamental coefficients.

2

- (iii) On the basis of the value of K, find the nature of the point at which K defined.
- (iv) Find the Gaussian curvature of the surface $\sigma(u, v) = (u v, u + v, u^2 + v^2)$ at (5, 0, 1).