

## UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

## **CC7-MATHEMATICS**

# RIEMANN INTEGRATION AND SERIES OF FUNCTIONS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

# **GROUP-A**

1. Answer any four questions:

 $3 \times 4 = 12$ 

(a) Examine the uniform convergence of the sequence of functions  $\{f_n\}_{n\in\mathbb{N}}$ , where

3

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
,  $x \ge 0$ 

(b) A function f is defined by  $f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{10^n}$ ,  $x \in \mathbb{R}$ 

3

Show that f is continuous for any  $x \in \mathbb{R}$ 

(c) Prove that,  $\mathcal{B}(x, y) = 2 \int_{0}^{\pi/2} (\sin t)^{2x-1} (\cos t)^{2y-1} dt$ ,

3

where  $\mathcal{B}$  represents beta function.

(d) Examine the convergence of  $\int_{1}^{\infty} \frac{dx}{(1+x)\sqrt{x}}$ 

3

(e) Find the Fourier coefficients for the function f(x) = |x|, in  $-\pi \le x \le \pi$ .

3

(f) Evaluate the integral  $\int_{-2}^{2} ([x^2] + |x|) dx$ , where [x] = greatest integer  $\le x$ .

3

#### **GROUP-B**

Answer any four questions

 $6 \times 4 = 24$ 

2. Test the convergence of the improper integral  $\int_{0}^{\infty} \frac{\sin x^{m}}{x^{n}} dx$ .

6

Expand the periodic function  $f(x) = x^2$ ,  $0 \le x \le l$  of period l, in a series of cosines only and hence deduce that

 $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$ 

4. Assuming the power series expansion for  $\frac{1}{\sqrt{1-x^2}}$  as

6

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{1 \cdot 3}{2 \cdot 4} x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^6 + \dots,$$

### UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC7/Revised & Old/2023

Obtain the power series expansion for  $\sin^{-1} x$  and deduce that

$$1 + \frac{1}{2 \cdot 3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} + \dots = \frac{\pi}{2}$$

- 5. Let  $D \subseteq \mathbb{R}$  and  $\forall n \in \mathbb{N}, f_n : D \to \mathbb{R}$  be continuous functions. If the sequence  $\{f_n\}$  be uniformly convergent on D to a function f, then prove that f is continuous on D.
- 6

- Show that  $\Gamma\left(n+\frac{1}{2}\right) = \frac{\sqrt{\pi} \Gamma(2n+1)}{2^{2^n} \Gamma(n+1)}$ 6.
  - 6
- 7. State and prove Riemann-Lebesgue Lemma.

# 6

#### GROUP-C

# Answer any two questions

- 8. (a) Show that  $\int_{-\infty}^{\infty} \frac{\sin ax}{x} dx = \frac{\pi}{2}$  or 0 or  $-\frac{\pi}{2}$  according as a is positive or zero or negative.
  - 6

- (b) Prove that  $\int_{-1+x^t}^{\infty} dx$  is convergent iff 0 < s < t.
- 9. (a) Starting from the power series expansion of  $\frac{1}{1+r^2}$  with proper justification, 4+2 show that
  - $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots$  (-1 \le x \le 1) Hence deduce that  $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$

  - (b) Show that, when  $0 < x < \pi$  $\pi - x = \frac{1}{2}\pi + \frac{\sin 2x}{1} + \frac{\sin 4x}{2} + \frac{\sin 6x}{2} + \dots$

6

- 10.(a) Prove that a bounded function f is integrable in [a, b] if the set of its points of 6 discontinuity has a finite number of limit points.
  - (b) Define f on [a, b] as follows

6

- $f(x) = \begin{cases} 1/q^2 & \text{when } x = \frac{p}{q} \\ 1/q^3 & \text{when } x = \sqrt{\frac{p}{q}} \end{cases}$
- where p, q are relatively prime integers and f(x) = 0 elsewhere, then show that f is Riemann integrable on [a, b].
- 11.(a) Let  $f_n(x) = \frac{nx}{1 + n^2 x^2} \frac{(n-1)x}{1 + (n-1)^2 x^2}$ ,  $x \in [0, 1]$ .
  - Show that at x = 0.
    - $\frac{d}{dx}\sum f_n(x) \neq \sum \frac{d}{dx}f_n(x)$
  - (b) Find the Fourier series of the periodic function f with period  $2\pi$  defined as follows:
- 6

6

- $f(x) = \begin{cases} 0 & , & \text{for } -\pi < x \le 0 \\ x & , & \text{for } 0 \le x \le \pi \end{cases}$
- What is the sum of the series at  $x = 0, \pm \pi, 4\pi, -5\pi$ ?