UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC6/Revised & Old/2023

30d Sem 3/12/23

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC6-MATHEMATICS

GROUP THEORY-I

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions:

 $3 \times 4 = 12$

- (a) List all even permutations of S_4 .
- (b) Give an example of a non-cyclic group each of whose proper subgroups is cyclic.
- (c) Let $G = S_3$ and $G' = \{1, -1\}$ and $\varphi: G \to G'$ is defined by

$$\varphi(x) = \begin{cases} 1 & \text{if } x \text{ is an even permutation} \\ -1 & \text{if } x \text{ is an odd permutation} \end{cases}$$

then determine $\ker \varphi$.

- (d) Find the center of the symmetric group S_3 .
- (e) If in a group G, $(a*b)^{-1} = a^{-1}*b^{-1}$ for all $a, b \in G$, then show that G is a commutative group.
- (f) Find the number of generators of the group $(\mathbb{Z}_{15}, +)$.

GROUP-B

- 2. Answer any four questions: 6×4 = 24
 (a) Prove that every subgroup of a cyclic group is cyclic. 6
 (b) Let H and K be two subgroups of a group G. Then show that HK is a subgroup of G if and only if HK = KH.
 (c) (i) Show that A₄ has no subgroup of order 6. 4
 - (ii) Let G be a group of order 28. Show that G has a non-trivial subgroup.

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC6/Revised & Old/2023

- (d) (i) Let H be a subgroup of a group G. Define $N(H) = \{g \in G \mid gHg^{-1} = H\}$. 2+2 Show that N(H) is a subgroup of G. Find N(H) if H is normal in G.
 - (ii) Prove that every group of prime order is cyclic.
- (e) Prove that every finite cyclic group of order n is isomorphic to \mathbb{Z}_n .
- (f) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$ in S_5 . Find a permutation 6 γ in S_5 such that $\alpha \gamma = \beta$.

GROUP-C

- 3. Answer any two questions: 12×2 = 24
 (a) (i) Prove that in a cyclic group of even order, there is exactly one element of order 2.
 - (ii) Let $G = \langle a \rangle$ be an infinite cyclic group. Show that G has only two generators.
 - (iii) Prove that the group $4\mathbb{Z}/12\mathbb{Z} \simeq \mathbb{Z}_3$.
 - (iv) Find all normal subgroups of S₄.
 (b) (i) Let G be a group of order 15 and A and B are subgroups of G of order 5
 4
 - and 3, respectively. Show that G = AB.
 (ii) Prove that a finite semigroup (S,*) is a group if and only if (S,*) satisfies the cancellation laws (i.e., a*c=b*c implies a=b and c*a=c*b implies a=b for all a, b, c∈S).
 - (iii) State second isomorphism theorem for groups.
 - (c) (i) Let H be a subgroup of a group G. Prove that any two left cosets of H in G are either identical or they have no common element.
 - (ii) Let H be a subgroup of a group G. If $x^2 \in H$ for all $x \in G$, then prove that H is a normal subgroup of G and G/H is commutative.
 - (iii) Find all subgroups of Z/21Z.
 - (d) (i) Show that every group of order 14 contains only 6 elements of order 7.
 - (ii) Let X be a non-empty set and P(X) be the power set of X. Examine if P(X) is a group under the composition * defined by

$$A*B = A\Delta B = (A \setminus B) \cup (B \setminus A), \forall A, B \in P(X)$$

(iii) Show that $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic.

2