

'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2023

CC5-MATHEMATICS

THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC SPACE

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1.		Answer any <i>four</i> questions:	$3 \times 4 = 12$
	(a)	Evaluate $\lim_{x\to 3} \left[[x] - \left[\frac{x}{3} \right] \right]$.	3
	(b)	If a function $f:[0,1] \to \mathbb{R}$ is continuous on $[0,1]$ and f assumes only rational values on $[0,1]$, then prove that f is a constant.	3
	(c)	Discuss the applicability of M.V.T. for $f(x) = x $ in $[-1, 1]$ and $[0, 1]$.	3
9	(d)	Is the function $f(x) = \frac{x}{x+1}$ uniformly continuous for $x \in [0, 2]$? Justify your answer.	3
	(e)	Prove that the intersection of two open sets in a metric space is open.	3
	(f)	For a subset A of a metric space (X, d) , show that $Int(A) = X - cl(X - A)$.	3
		GROUP-B	ş
2.	1	Answer any four questions:	$6 \times 4 = 24$
4	(a)	If $f:[a,b]\to\mathbb{R}$ is continuous, then show that f attains its supremum and infimum on $[a,b]$.	6
(Suppose $f(x)$ is a function satisfying the conditions: (i) $f(0) = 2$, $f(1) = 1$ (ii) f has a minimum value at $x = \frac{1}{2}$ (iii) $f'(x) = 2ax + b$ for all x . Determine the constants a , b and the function $f(x)$.	6
» (c)	State and prove Rolle's Theorem.	6

UG/CBCS/B.Sc./Hons./3rd Sem./Mathematics/MATHCC5/Revised & Old/2023

- (d) If $f:(a,b)\to\mathbb{R}$ is continuous, then prove that f is uniformly continuous on (a,b) iff $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exists finitely.
 - 6

6

- (e) For a metric space (X, d), show that $d^*(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, $\forall x, y \in X$ is a bounded metric on X.
- (f) If $\{x_n\}$ and $\{y_n\}$ are two sequences in a metric space (X, d) such that $x_n \to x$ and $y_n \to y$, then prove that $d(x_n, y_n) \to d(x, y)$.

GROUP-C

3. Answer any two questions:

 $12 \times 2 = 24$

6

- (a) (i) Suppose $g: D \to \mathbb{R}$ be a function on $D \subseteq \mathbb{R}$ and $(c, \infty) \subset D$ for some $c \in \mathbb{R}$. Prove that $\lim_{x \to \infty} g(x) = l$, $l \in \mathbb{R}$ iff $\lim_{x \to 0^+} g\left(\frac{1}{x}\right) = l$.
 - (ii) Using Cauchy's principle prove that $\lim_{x\to 0} \cos \frac{1}{x}$ does not exist.
- (b) (i) A function f: R→ R satisfies f(x+y) = f(x) + f(y) for all x, y ∈ R and f is continuous at 0. Prove that f is continuous at every c∈ R. Also deduce that f(x) = kx for all x∈ R and for some k∈ R.
 - (ii) A function $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = x, $x \in \mathbb{Q}$; f(x) = 0, $x \in \mathbb{R} \setminus \mathbb{Q}$. 6 Show that f is continuous at 0 and f has a discontinuity of the 2nd kind at every other point in \mathbb{R} .
- (c) (i) Suppose a function $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and $f'(x) \neq 0$ on (a,b). If f(a) and f(b) are of opposite signs, show that there is a unique $x_0 \in (a,b)$ such that $f(x_0) = 0$.
 - (ii) Find the global maximum and the global minimum of the function f on \mathbb{R} , where $f(x) = \frac{x^2 2x + 4}{x^2 + 2x + 4}$, $x \in \mathbb{R}$.
- (d) (i) Consider the space of all sequences of complex numbers and define the function d on X by

$$d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n - y_n|}{(1 + |x_n - y_n|)}, \ \forall x = \{x_n\}, \ y = \{y_n\} \in X$$

Show that (X, d) is a metric space.

(ii) Suppose X be the set of all continuous real valued functions defined on [0,1] and $d(x,y) = \int_0^1 |x(t)-y(t)| dt$, $x, y \in X$. Show that (X,d) is not complete.