UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC12/Revised & Old/2023

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2023

CC12-MATHEMATICS

NUMERICAL METHODS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

GROUP-A

1. Answer any five questions:

 $1 \times 5 = 5$

- (a) Prove that $\nabla^k y_n = \Delta^k y_{n-k}$.
- (b) Find the number of significant figures in V_A w.r.t V_T , where $V_A = 0.05411$, $V_T = 0.05418$.
- (c) Why Newton-Raphson is called the method of tangent?
- (d) State the condition of convergence of Gauss-Seidel iteration method for solving numerically system of linear equations.
- (e) When a quadrature formula is called open type or closed type?
- (f) Let h be the length of spacing and $(\Delta_h \nabla_h) x^2 = 8$. Find h.
- (g) Find the value of k for which the Trapezoidal rule with single interval [0, 1] will be exact for approximating the integral

$$\int_{0}^{1} (x^4 - kx^3) dx$$

(h) Write down the iterative formula of Runge-Kutta method of order 4 stating clearly the terms involved.

GROUP-B

2. Answer any *three* questions:

 $5 \times 3 = 15$

(a) Find the inverse of the matrix

5

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

Using LU decomposition method taking $u_{11} = u_{22} = u_{33} = 1$, where $U = (u_{ij})_{3\times 3}$.

(b) Show that $f(E) a^x = a^x f(a)$ where f(E) is a polynomial in E taking unity as the interval of differencing.

5

Turn Over

5091

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC12/Revised & Old/2023

(c) (i) Find the missing term in the following table:

x	0	1 -	2	3	4	5
f(x)	0	_	8	15	_	35

(ii) What is interpolation?

5

3

(d) Use Runge-Kutta method of order 4 to approximate y when x = 0.1 and x = 0.2 given that

$$\frac{dy}{dx} = \frac{y-x}{1+y+x}, \ y(0) = 2$$

(e) Describe Regula-Falsi method to find a simple root of an equation f(x) = 0. Why this method is called an inverse linear interpolation method?

3+2

GROUP-C

3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) Find an approximate real root of the equation $2x + 3 \sin x 5 = 0$ correct upto 3 decimal places using secant method.
 - (ii) Show that Gauss-Seidel iteration is convergent if the system of equation is strictly diagonally dominant.
- (b) (i) Evaluate $\int_{0}^{\pi/2} \sqrt{1-0.162\sin^2 x} \ dx$ by Simpson's $1/3^{rd}$ rule, correct upto four decimal places taking six subintervals.
 - (ii) Define degree of precision of a quadrature formula. Prove that the degree of precision of a quadrature formula of the form

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{n} w_k f(x_k)$$

cannot exceed 2n+1 where x_k 's are the (n+1) nodes in [a,b] and w_i 's are n+1 weights given to the (n+1) function values $f(x_k)$.

(c) (i) State the assumption for the applicability of Power method to determine a dominant eigen pair of a square matrix. How this method is applicable to compute the least eigen value and corresponding eigen vector of a square matrix.

3+2

1+4

(ii) Show that $\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\} \quad \text{and} \quad \nabla \Delta f(x) = (\Delta - \nabla) f(x)$

where the symbols have their usual meaning.

(d) (i) Solve the following system of linear equations:

5

$$10x + y + z = 12$$
$$2x+10y+z=13$$
$$x+y+3z=5$$

using Gauss-Jordan method, correct upto 3D.

(ii) Deduce numerical differentiation formula from Newton's backward interpolation formula without error term keeping at least three terms.

5