UNIVERSITY OF NORTH BENGAL B.Sc. Honours 5th Semester Examination, 2023 #### **CC11-MATHEMATICS** ## **GROUP THEORY-II** # (REVISED SYLLABUS 2023 / OLD SYLLABUS 2018) Time Allotted: 2 Hours Full Marks: 60 The figures in the margin indicate full marks. $3 \times 4 = 12$ 3 #### **GROUP-A** Answer any *four* questions from the following: (a) Show that the characteristic subgroup of a group is normal. 1. | | (b) | Find the number of inner automorphisms of the group S_3 . | 3 | |----|-----|---|-------------------| | | (c) | Find the number of Sylow 2-subgroups of S_4 and A_4 . | 3 | | | (d) | Find the number of non-isomorphic abelian groups of order $(2017)^3$. | 3 | | | (e) | Find the conjugacy classes of the group D_3 . | 3 | | | (f) | Prove that the additive group $\mathbb{Z} \times \mathbb{Z}$ is not cyclic. | 3 | | | | GROUP-B | | | | | | | | | | Answer any four questions from the following | $6 \times 4 = 24$ | | 2. | (a) | Prove that a commutative group G is simple if and only if $G \cong \mathbb{Z}_p$, for some prime number p . | 3 | | | (b) | Let G be an infinite cyclic group. Prove that $\operatorname{Aut}(G) \cong \mathbb{Z}_2$. | 3 | | 3. | | Let H be a subgroup of a group G . Consider a mapping $\sigma: H \times G \to G$, defined | | | | | by $\sigma(h, g) = gh^{-1}$ for all $(h, g) \in H \times G$. | | | | (a) | Prove that this mapping defines an action of H on G . | 4 | | | (b) | Find $Orb(g)$ and $Stab(g)$, where $g \in G$. Here $Orb(g)$ denotes the orbit of 'g' and $Stab(g)$ denotes the stabilizer of 'g' under this action. | 2 | # UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC11/Revised & Old/2023 | 4. | State and prove Sylow's second theorem. | 6 | | | |---------|--|--------------------|--|--| | 5. (a) | Prove that there is no simple group of order 300. | 4 | | | | (b) | State the fundamental theorem of finite abelian group. | 2 | | | | 6. (a) | Find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$. | 4 | | | | (b) | Write the class equation of S_4 . | 2 | | | | 7. | Prove that direct product of two finite cyclic groups is cyclic if and only if orders of the cyclic groups are relatively prime. | 6 | | | | GROUP-C | | | | | | | Answer any two questions from the following | $12 \times 2 = 24$ | | | | 8. (a) | Let N be a normal subgroup of a group G . Prove that G/N is abelian if and only if $[G, G]$ is a subgroup of N . Here $[G, G]$ denotes the commutator subgroup of G . | 4 | | | | (b) | Find $[A_4, A_4]$ and $[S_3, S_3]$. | 4+4 | | | | 9. (a) | Show that the converse of Lagrange's theorem for finite abelian group is not true, in general. | 4 | | | | (b) | Prove that the center of a <i>p</i> -group is nontrivial. | 4 | | | | (c) | Show that every non-cyclic group of order 21 contains only 14 elements of order 3. | 4 | | | | 10.(a) | Define automorphism of a group G . Prove that set of all automorphisms of a group G forms a group under function composition. If C_n be a cyclic group of order n prove that $\operatorname{Aut}(C_n) \cong \mathbb{Z}_n^X$, an abelian group of order $\phi(n)$. | 1+2+5 | | | | (b) | Let G be a finite group and p be a prime integer. If p divides $ G $ then prove that G has an element of order p . | 4 | | | | 11.(a) | Prove that every group is isomorphic to some subgroup of the group S_A of all permutations of some set A . Using this result, prove that if G be a group and H be a subgroup of G of index n , then there exists a homomorphism ϕ from G into S_n such that $\ker \phi \subseteq H$. | 4+4 | | | | (b) | Prove that if a group G acts on itself by conjugation, then for each $a \in G$, $\operatorname{Stab}(a) = Z_a$. Here Z_a denotes the centralizer of 'a'. | 4 | | | 5090 2