

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2023

CC11-MATHEMATICS

GROUP THEORY-II

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks.

 $3 \times 4 = 12$

3

GROUP-A

Answer any *four* questions from the following:

(a) Show that the characteristic subgroup of a group is normal.

1.

	(b)	Find the number of inner automorphisms of the group S_3 .	3
	(c)	Find the number of Sylow 2-subgroups of S_4 and A_4 .	3
	(d)	Find the number of non-isomorphic abelian groups of order $(2017)^3$.	3
	(e)	Find the conjugacy classes of the group D_3 .	3
	(f)	Prove that the additive group $\mathbb{Z} \times \mathbb{Z}$ is not cyclic.	3
		GROUP-B	
		Answer any four questions from the following	$6 \times 4 = 24$
2.	(a)	Prove that a commutative group G is simple if and only if $G \cong \mathbb{Z}_p$, for some prime number p .	3
	(b)	Let G be an infinite cyclic group. Prove that $\operatorname{Aut}(G) \cong \mathbb{Z}_2$.	3
3.		Let H be a subgroup of a group G . Consider a mapping $\sigma: H \times G \to G$, defined	
		by $\sigma(h, g) = gh^{-1}$ for all $(h, g) \in H \times G$.	
	(a)	Prove that this mapping defines an action of H on G .	4
	(b)	Find $Orb(g)$ and $Stab(g)$, where $g \in G$. Here $Orb(g)$ denotes the orbit of 'g' and $Stab(g)$ denotes the stabilizer of 'g' under this action.	2

UG/CBCS/B.Sc./Hons./5th Sem./Mathematics/MATHCC11/Revised & Old/2023

4.	State and prove Sylow's second theorem.	6		
5. (a)	Prove that there is no simple group of order 300.	4		
(b)	State the fundamental theorem of finite abelian group.	2		
6. (a)	Find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.	4		
(b)	Write the class equation of S_4 .	2		
7.	Prove that direct product of two finite cyclic groups is cyclic if and only if orders of the cyclic groups are relatively prime.	6		
GROUP-C				
	Answer any two questions from the following	$12 \times 2 = 24$		
8. (a)	Let N be a normal subgroup of a group G . Prove that G/N is abelian if and only if $[G, G]$ is a subgroup of N . Here $[G, G]$ denotes the commutator subgroup of G .	4		
(b)	Find $[A_4, A_4]$ and $[S_3, S_3]$.	4+4		
9. (a)	Show that the converse of Lagrange's theorem for finite abelian group is not true, in general.	4		
(b)	Prove that the center of a <i>p</i> -group is nontrivial.	4		
(c)	Show that every non-cyclic group of order 21 contains only 14 elements of order 3.	4		
10.(a)	Define automorphism of a group G . Prove that set of all automorphisms of a group G forms a group under function composition. If C_n be a cyclic group of order n prove that $\operatorname{Aut}(C_n) \cong \mathbb{Z}_n^X$, an abelian group of order $\phi(n)$.	1+2+5		
(b)	Let G be a finite group and p be a prime integer. If p divides $ G $ then prove that G has an element of order p .	4		
11.(a)	Prove that every group is isomorphic to some subgroup of the group S_A of all permutations of some set A . Using this result, prove that if G be a group and H be a subgroup of G of index n , then there exists a homomorphism ϕ from G into S_n such that $\ker \phi \subseteq H$.	4+4		
(b)	Prove that if a group G acts on itself by conjugation, then for each $a \in G$, $\operatorname{Stab}(a) = Z_a$. Here Z_a denotes the centralizer of 'a'.	4		

5090 2