UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC1/Revised & Old/2023

'समानो मन्त्रः समितिः

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2023

CC1-MATHEMATICS

CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following: 1.

 $3 \times 4 = 12$

- (a) Determine the length of one arch of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$.
- (b) Show that the curve $y = x^3$ has a point of inflexion at x = 0.
- (c) Evaluate $\lim_{x\to 0} \frac{xe^x \log(1+x)}{x^2}$.
- (d) Solve $\log \left(\frac{dy}{dx} \right) = ax + by$.
- (e) Find the equation of the circle on the sphere $x^2 + y^2 + z^2 = 49$ whose centre is at the point (2, -1, 3).
- (f) If $I_n = \int_0^{\pi/4} \tan^n x \, dx$, show that $I_{n+1} + I_{n-1} = \frac{1}{n}$.

GROUP-B

2. Answer any four questions from the following: $6 \times 4 = 24$

(a) If
$$y = \sin(m\cos^{-1}\sqrt{x})$$
, prove that $\lim_{x\to 0} \frac{y_{n+1}}{y_n} = \frac{4n^2 - m^2}{4n + 2}$.

4+2

(b) Obtain the reduction formula for $\int_{-\infty}^{\pi/4} \sec^n x \, dx$ where n(>1) being a positive integer. Using this find the value of $\int_{0}^{\infty} \sec^4 x \, dx$.

Turn Over

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC1/Revised & Old/2023

(c) Transform the following equation to its canonical form and determine the conic represented by it

6

$$x^2 + 4xy + 4y^2 - 20x + 10y - 50 = 0$$

(d) Find the equation of the cylinder whose generators are parallel to the straight line -3x = 6y = 2z and whose guiding curve is the ellipse $2x^2 + y^2 = 1$, z = 0.

6

(e) Solve $\frac{dy}{dx} = \sqrt{y-x}$.

6

(f) Show that the asymptotes of the curve $x^2y^2 = a^2(x^2 + y^2)$ form a square whose side is of length 2a.

GROUP-C

3. Answer any two questions from the following:

 $12 \times 2 = 24$

- (a) (i) Find the envelope of the family of ellipses $\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$, where 6+6 the parameters α and β are connected by $\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} = 1$.
 - (ii) If $y = e^{m \sin^{-1} x}$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (m^2 + n^2)y_n = 0$.
- (b) (i) Find the area in the first quadrant bounded by x = 0, y = 0 and 6+6 $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
 - (ii) Find the volume of revolution generated by the region enclosed by $y = \sqrt{x}$ and the lines y = 1, x = 4 about x-axis.
- (c) (i) Solve $\tan y \frac{dy}{dx} = \sin(x+y) + \sin(x-y)$. 6+6
 - (ii) Solve $\frac{dy}{dx} + 2xy = xy^3$.
- (d) (i) Find equations of the generating lines of the hyperboloid $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{16} = 1$. 6+(3+3) which passes through the point (2, 3, -4).
 - (ii) Show that the distance between two points in two dimensional plane does not change under translation and rotation of co-ordinate axes.

__ _