

'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

CC9-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-I

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following $3 \times 4 = 12$ Let F be a field, then show that the groups $(F \setminus \{0\}, \cdot)$ and (F, +) cannot be 1. isomorphic. Find a basis and dimension of the subspace S of the vector space $M_2(\mathbb{R})$ over \mathbb{R} , 3 2. where $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : a+b=0 \right\}$. Find a generator for each of the ideals $4\mathbb{Z}+10\mathbb{Z}$ and $8\mathbb{Z}\cap 12\mathbb{Z}$ of \mathbb{Z} . 3 3. Is the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ a field? Justify your answer. 3 4. 3 Let V be a vector space with $\{\alpha, \beta, \gamma\}$ as a basis. Prove that the set 5 $\{\alpha + \beta + \gamma, \beta + \gamma, \gamma\}$ is also a basis of V. Find a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that 3 Im $T = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}$.

GROUP-B

7. The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the ordered basis (-1, 1, 1), (1, -1, 1), (1, 1, -1) of \mathbb{R}^3 is $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}$. Find T. Also find the matrix of T relative to the standard basis of \mathbb{R}^3 .

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/Revised & Old/2023

- 8. Find all the units in the ring \mathbb{Z}_{10} . Prove that these units form a cyclic group under multiplication.
- 9. State and prove third isomorphism theorem on rings.
- 10. Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) of \mathbb{R}^3 to the vectors (1, 1), (2, 3), (3, 2) respectively. Prove that T is onto but not one-one.
- 11.(a) Prove that every Boolean ring is commutative. Is the converse true? Justify your answer. A ring is Boolean if its every element is idempotent.
 - (b) Let S and T be two ideals of a ring R. Prove that $S \cup T$ is an ideal of R iff either $S \subseteq T$ or $T \subseteq S$.
- 12.(a) In \mathbb{R}^2 , consider $\alpha = (3, 1)$ and $\beta = (2, -1)$. Determine $L\{\alpha, \beta\}$ and show that $L\{\alpha, \beta\} = \mathbb{R}^2$.
 - (b) Prove that the set S of all 2×2 symmetric matrices with real entries is a subspace of $M_2(\mathbb{R})$.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

- 13.(a) Prove that in a commutative ring R with identity, a proper ideal P of R is a prime ideal iff R/P is an integral domain. Use this result to prove that $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$.
 - (b) Give an example of each of the following: 2+2
 - (i) An infinite ring R (which is not a field) with char R = 2.
 - (ii) An infinite field F with char F = 3. Here char S denotes the characteristic of the ring S.
 - (c) Prove that the characteristic of a Boolean ring is 2.
- 14.(a) Consider the subring R of $M_2(\mathbb{Z})$; where $R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}$. 2+2+2+2

Let $\phi: R \to \mathbb{Z}$ be a map, defined by $\phi \begin{pmatrix} a & b \\ b & a \end{pmatrix} = a - b$ for all $\begin{pmatrix} a & b \\ b & a \end{pmatrix} \in R$.

- (i) Show that ϕ is a homomorphism.
- (ii) Determine ker φ.
- (iii) Show that $R/\ker \phi$ is isomorphic to \mathbb{Z} .
- (iv) Is $ker \phi$ a prime ideal of R? Justify.
- (b) Let $(R, +, \cdot)$ be a ring where (R, +) is a cyclic group. Prove that R is a commutative ring. Use this result to prove that the rings of order 2, 3, 5, 6, 7 are commutative rings.

4075

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/Revised & Old/2023

15.(a) Show that T is non-singular and determine T^{-1} where $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear mapping defined by:

$$T(x, y, z) = (x - y, x + 2y, y + 3z)$$
 for all $(x, y, z) \in \mathbb{R}^3$.

(b) Suppose a linear mapping $T: V \to W$ maps the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$ of $V(\mathbb{R})$ as

$$T(\alpha_1) = \beta_1, \ T(\alpha_2) = \beta_1 + \beta_2, \ T(\alpha_3) = \beta_1 + \beta_2 + \beta_3$$

where $\{\beta_1, \beta_2, \beta_3\}$ is an ordered basis of $W(\mathbb{R})$. Find the matrix of T^{-1} relative to the same chosen ordered bases.

- (c) Prove that the vector space $\mathbb R$ over $\mathbb Q$ is infinite dimensional.
- 16.(a) Let $W_1 = L\{(1, -2, 1), (2, 3, 5)\}$ and $W_2 = L\{(1, -2, 0), (3, -3, 0)\}$ then show that W_1 and W_2 are subspaces of \mathbb{R}^3 . Determine $\dim W_1$, $\dim W_2$ and $\dim (W_1 + W_2)$.
 - (b) Find the dimension of ker T where $T: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear transformation, given by T(x, y, z) = (x+z, y+z) for all $(x, y, z) \in \mathbb{R}^3$.

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

CC10-MATHEMATICS

METRIC SPACE AND COMPLEX THEORY

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

1. Answer any four questions from the following:

 $3 \times 4 = 12$

- (a) Show that the function $f: X \to Y$ is uniformly continuous, where X is discrete metric space and Y is any metric space.
- (b) Give an example with proper justification of a set which is bounded but not totally bounded.
- (c) Let X be a set and $|X| \ge 2$ with the discrete metric. Show that X is not connected.
- (d) If f be an analytic function on a region $G(\subset \mathbb{C})$ such that $\operatorname{Im} f = 0$, then show that f is constant.
- (e) Show that every totally bounded metric space is separable.
- (f) Find the Laurent series expansion of the function $\frac{7z-2}{z(z-2)(z+1)}$ in the domains $1\frac{1}{2}+1\frac{1}{2}$ |z|>2 and 1<|z|<2 respectively.

GROUP-B

Answer any four questions from the following

 $6 \times 4 = 24$

Turn Over

- 2. Show that the map $f:[0,1] \to [0,1]$ given by $f(x) = x \frac{x^2}{2}$, is a weak contraction map but not contraction map. Also find its fixed points if exists.
- 3. Establish Cauchy-Riemann equations in the polar form for a function f(z).
- 4. For any non-empty A of a metric space (X, d), show that the function $f: X \to \mathbb{R}$ 6 given by f(x) = d(x, A); $x \in X$, is uniformly continuous.
- 5. State and prove the sufficient conditions for differentiability of a complex valued function f(z) of a complex variable.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC10/Revised & Old/2023

- 6. Let f(z) = u(x, y) + iv(x, y) be an analytic function in a region G. Verify whether the functions $\overline{f(z)}$, $f(\overline{z})$, $\overline{f(\overline{z})}$ are analytic or not in G.
- 7. (a) Let $f(z) = \frac{1}{z^2}$ and Γ be the straight line joining the points i and 3+i. Show that $\left| \int_{\Gamma} f(z) dz \right| \le 3.$
 - (b) Evaluate $\int_{|z|=2}^{\infty} \frac{1}{(z^2+1)} dz$.

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
	Prove that union of two compact subsets of the metric space (X, d) is also compact.	6
(b)	Let (X, d) be a metric space with $x_0 \in X$. Let $f: X \to \mathbb{R}$ be defined by $f(x) = d(x, x_0)$. Prove that f is uniformly continuous on X .	6
9. (a)	State and prove Cauchy-Goursat theorem.	8
(b)	Find the value of $\int_{\Gamma} \frac{dz}{z-a}$, if	4
	(i) a lies inside Γ , and (ii) a lies outside Γ .	
10.(a)	If $f(z)$ is analytic within and on a simple closed rectifiable curve Γ and z_0 is any point inside Γ , then prove that $f'(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z-z_0)^2} dz$.	6
(b)	Expand $f(z) = \cos z$ in Taylor Series about $z = \pi/4$ and determine the region of convergence of the series.	6
11.(a)	Suppose that $f(z) = u(x, y) + iv(x, y)$ be an entire function such that $u_y - v_x = -2$ for all $z(=x+iy) \in \mathbb{C}$. Verify the function $f(z)$ is constant or not.	5
(b)	Prove that every polynomial of degree n has exactly n (not necessarily distinct) zeros.	3
(c)	Evaluate $\int_{\Gamma} \frac{\log z}{(z-1)^3} dz$, where Γ is the circle $ z-2 =3/2$.	4

4076

'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

CC8-MATHEMATICS

MULTIVARIATE CALCULUS

(REVISED SYLLABUS 2023 / OLD SYLLABUS 2018)

Time Allotted: 2 Hours The figures in the margin indicate full marks.

GROUP-A

 $3 \times 4 = 12$ Answer any four questions from the following: 1. (a) Examine whether $f(x, y) = \begin{cases} xy \ ; & (x, y) \neq (0, 0) \\ 0 \ ; & \text{if } (x, y) = (0, 0) \end{cases}$ 3 is continuous at the origin. (b) State Euler's theorem for homogeneous function of two variables. 3 (c) Find the gradient of $\vec{r} + \frac{1}{\vec{r}}$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. (d) Find the volume under the plane z = 8x + 6y3 $R = \{(x, y): 0 \le x \le 1 \text{ and } 0 \le y \le 2\}.$ (e) Show that for any vector \vec{a} , $\operatorname{curl} \vec{a}$ is a solenoidal vector. 3 (f) Find the equation of the tangent plane to the surface $z = x^2 + y^2$ at the 3 point (1, 2, 5).

GROUP-B

Answer any four questions from the following $\begin{cases} \frac{x^3 - y^3}{x^2 + y^2} ; & x^2 + y^2 \neq 0 \end{cases}$ $6 \times 4 = 24$

2. Let
$$f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} ; & x^2 + y^2 \neq 0 \\ 0 ; & \text{if } x^2 + y^2 = 0 \end{cases}$$

Show that f is continuous at (0, 0) but not differentiable at (0, 0).

- Find the maximum and minimum values of the function 3x + 4y on the circle 3. $x^2 + y^2 = 1.$
- Prove that $\iiint \overline{\nabla} \times \overline{B} dV = \iint \hat{n} \times \overline{B} dS$, where V is the volume bounded by a 4. closed surface S and \hat{n} is the positive outward drawn normal (unit) to S.
- Prove that $r^n \vec{r}$ is irrotational. Find n when it is solenoidal vector. 6 5.

Full Marks: 60

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC8/Revised & Old/2023

6. Use Stoke's theorem to evaluate

$$\oint_{S} (\sin z \, dx - \cos x \, dy + \sin y \, dz)$$

where S is the boundary of the rectangle:

$$0 \le x \le \pi$$
, $0 \le y \le 1$ and $z = 3$

Evaluate the integral $\iint e^{(x+y)/(x-y)} dx dy$, where R is the trapezoidal region with 7. 6 . vertices (1, 0), (2, 0), (0, -2) and (0, -1).

GROUP-C

Answer any two from the following

8. (a) Let
$$f(x, y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \cos \frac{1}{y} & ; x \neq 0, y \neq 0. \\ x^2 \sin \frac{1}{x} & ; x \neq 0 \\ y^2 \cos \frac{1}{y} & ; y \neq 0 \\ 0 & ; x = 0 = y \end{cases}$$
 2+2+2

Prove that the both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0,0) but none of them

is continuous at (0, 0). Also, examine the differentiability of f(x, y)at (0, 0).

(b) Use Stoke's theorem, prove that

3+3

- curl grad $\phi = 0$, where ϕ is a scalar function.
- (ii) div curl $\vec{F} = 0$, where F is a vector field.
- 9. (a) If E be the region bounded by the circle $x^2 + y^2 2ax 2by = 0$, show that 6

$$\iint_{E} \sqrt{x(2a-x) + y(2b-y)} \, dx \, dy = \frac{2\pi}{3} (a^2 + b^2)^{3/2}$$

$$\begin{cases} x^2 - y^2 \end{cases}$$

$$\iint_{E} \sqrt{x(2a-x) + y(2b-y)} \, dx \, dy = \frac{2\pi}{3} (a^{2} + b^{2})^{3/2}$$
(b) If $f(x, y) = \begin{cases} xy \frac{x^{2} - y^{2}}{x^{2} + y^{2}}, & (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$

6

Show that $f_{vv}(0, 0) \neq f_{vv}(0, 0)$

- 10.(a) Find the maximum value of $f(x, y, z) = x^2y^2z^2$ subject to the subsidiary 6 condition $x^2 + y^2 + z^2 = c^2$ (x, y, z are positive).
 - (b) Find $\vec{\nabla}(\vec{\nabla} \cdot \vec{A})$, when $\vec{A} = \frac{\vec{r}}{r}$.

6

6

- 11.(a) If \vec{a} is a constant vector, then prove that $\operatorname{curl}(\vec{r} \times \vec{a}) = -2\vec{a}$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} .$
 - (b) Show that the area bounded by a simple closed curve C is given by 6 $\frac{1}{2} \oint (x \, dy - y \, dx)$. Hence find area of the ellipse $x = a \cos \theta$ and $y = a \sin \theta$.