

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

CC3-MATHEMATICS

REAL ANALYSIS

(REVISED SYLLABUS 2023 AND OLD SYLLABUS 2018)

Full Marks: 60 Time Allotted: 2 Hours The figures in the margin indicate full marks. **GROUP-A** $3 \times 4 = 12$ Answer any four questions from the following: 1. 3 (a) Prove or disprove: Every bounded sequence is a Cauchy sequence (b) Show that $\lim_{n\to\infty} \left(\frac{2n!}{(n!)^2}\right)^{1/n} = 4$. 3 (c) Examine if the series $\sum_{n=2}^{\infty} \frac{\log n}{\sqrt{n+1}}$ is convergent or not. 3 3 (d) Show that a finite set is a closed set. (e) Check whether the set $\left\{1, -\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \cdots \right\}$ is open or closed. 3 (f) Prove that $\log_{10} 5$ is not rational. **GROUP-B** Answer any four questions from the following $6 \times 4 = 24$ 6 Prove that the union of two countable set is countable. 2. Test the convergence of the series $1 + \frac{x}{1!} + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \frac{4^4 x^4}{4!} + \cdots$ 3. for x > 0. 6 Show that every infinite bounded set has a limit point. 4. 3+3 For any two sets X and Y of \mathbb{R} , prove that

5.

(a) $\operatorname{ext}(X \cup Y) = \operatorname{ext}(X) \cap \operatorname{ext}(Y)$

(b) $int(X \cap Y) = int(X) \cap int(Y)$.

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC3/Revised & Old/2023

- 6. (a) Prove that $\left\{ \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \right\}_{n \in \mathbb{N}}$ is a convergent sequence.
 - (b) Find the upper limit and lower limit of the sequence $\left\{ (-1)^n \left(1 + \frac{1}{2n} \right) \right\}_{n \in \mathbb{N}}$
- 7. Prove that the series 6

$$1 + \frac{\alpha}{\beta} + \frac{\alpha(\alpha+1)}{\beta(\beta+1)} + \frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)} + \cdots$$

where α , β are positive, converges if $\beta > \alpha + 1$ and diverges if $\beta \le \alpha + 1$.

GROUP-C

Answer any two questions from the following

- $12 \times 2 = 24$
- 8. (a) Prove that a sequence $\{x_n\}$ converges to l iff both the sub-sequences $\{x_{2n}\}$ and $\{x_{2n-1}\}$ converge to l.
 - (b) Prove that $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$
 - (c) Show that every absolutely convergent series is convergent.
- 9. (a) Find the limit points of the set $S = \{\frac{2}{p} + \frac{3}{q} : p, q \in \mathbb{N}\}$. Is the set S closed? Is the 4+1+1 set S open? Justify your answer.
 - (b) Prove that the closure of a set $S \subset \mathbb{R}$ is the smallest closed set containing S.
- 10.(a) If a sequence $\{a_n\}$ is bounded then show that limit inferior and limit superior of $\{a_n\}$ are both finite.
 - (b) If $a_n = \sin \frac{n\pi}{2} + \frac{(-1)^n}{n}$, $n \in \mathbb{N}$, then show that $\underline{\lim} a_n = -1$ and $\overline{\lim} a_n = 1$.
 - (c) Show that the sequence $\{S_n\}$, where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ cannot converge.
- 11.(a) Prove that if $\sum_{n=1}^{\infty} a_n$ be convergent series of positive real numbers, then $\sum_{n=1}^{\infty} a_{2n}$ is convergent.
 - (b) Prove that the series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$ converges for p > 1 and diverges for $p \le 1$.

____X____

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

CC4-MATHEMATICS

DIFFERENTIAL EQUATION AND VECTOR CALCULUS (REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following

 $3 \times 4 = 12$

Solve $(x+y+1)\frac{dy}{dx}=1$.

3

If \vec{a} , \vec{b} , \vec{c} be three vectors, show that $[\vec{b} \times \vec{c}, \ \vec{c} \times \vec{a}, \ \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$. 2.

3

3. State Lipschitz condition. Show that the function $f(x, y) = xy^2$ satisfies Lipschitz condition on the region $|x| \le 1$, $|y| \le 1$.

3

Show that the differential equation $x^3 \frac{d^3y}{dx^3} - 6x \frac{dy}{dx} + 12y = 0$ has three linearly 4.

3

independent solutions of the form $y = x^r$.

A force $3\hat{i} + \hat{k}$ acts through the point $2\hat{i} - \hat{j} + 3\hat{k}$. Find the torque of the force 5. about the point $\hat{i} + 2\hat{j} - \hat{k}$.

3

3

Find the linear differential equation with real constant coefficient that is satisfied by the function. $y = 9 - 3x + \frac{1}{6}e^{5x}$.

GROUP-B

Answer any four questions from the following

 $6 \times 4 = 24$

7. Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}.$$

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC4/Revised & Old/2023

8. Let
$$\vec{F}(t) = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
. Find $\int_{1}^{2} \vec{F}(t) \times \frac{d^2\vec{F}(t)}{dt^2} dt$.

9. Solve the following differential equation
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$$
 6

10. If
$$\vec{r} = (a\cos t) \hat{i} + (a\sin t) \hat{j} + (at\tan \alpha) \hat{k}$$
, then prove that
$$\left[\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right] = a^3 \tan \alpha$$

11. Solve the equation
$$(D^2 - 2D + 1)y = xe^x$$
, by the method of undetermined 6 coefficients.

12. Solve:
$$\frac{dx}{dt} - 7x + y = 0$$

$$\frac{dy}{dt} - 2x - 5y = 0$$

GROUP-C

	Answer any two questions of the following	$12 \times 2 = 24$
13.(a) Sh	now that the equation of the curve, whose slope at any point (x, y) is equal to	6
(b) Sh	$+2x$ and which passes through the origin, is $y = 2(e^x - x - 1)$ how that the vector field defined by $\vec{F} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$ is rotational. Find the scalar potential u such that $\vec{F} = \operatorname{grad} u$.	6

14.(a) Solve
$$x^2 \frac{d^2 y}{dx^2} - x(x+2) \frac{dy}{dx} + (x+2)y = x^3$$
 given that $y = x$ and $y = xe^x$ are two linearly independent solutions of the corresponding homogeneous system.

(b) If
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
 and $r = |\vec{r}|$ prove that $\operatorname{curl}(f(r)\vec{r}) = \vec{0}$.

15.(a) Solve
$$\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + \left(a^2 + \frac{2}{x^2}\right)y = 0$$
 by reducing to normal form.

(b) If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$, $w = yz + zx + xy$, prove that
$$(\operatorname{grad} u) \cdot \{(\operatorname{grad} v) \times (\operatorname{grad} w)\} = 0.$$

16.(a) Prove that
$$(x+y+1)^{-4}$$
 is an integrating factor of the equation 7 $(2xy-y^2-y) dx + (2xy-x^2-x) dy = 0$ and hence solve it.

(b) If
$$\vec{F} = zy\hat{i} + z\hat{j} + y^2x\hat{k}$$
, where C is the curve: $x^2 + y^2 = 1, z = 0$, then find the value of $\oint_C \vec{F} \cdot d\vec{r}$.

2

2058

'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2023

CC4-MATHEMATICS

DIFFERENTIAL EQUATION AND VECTOR CALCULUS (OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

GROUP-A

Answer any four questions from the following

 $3 \times 4 = 12$

- 1. Find $\frac{1}{D^2 9} \{ e^{3x} \cosh x + e^{3x} \cdot x^2 \sin x \}$.
- 2. If \vec{a} , \vec{b} , \vec{c} be three vectors, show that $[\vec{b} \times \vec{c}, \ \vec{c} \times \vec{a}, \ \vec{a} \times \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$.
- 3. State Lipschitz condition. Show that the function $f(x, y) = xy^2$ satisfies Lipschitz condition on the region $|x| \le 1$, $|y| \le 1$.
- 4. Show that the differential equation $x^3 \frac{d^3y}{dx^3} 6x \frac{dy}{dx} + 12y = 0$ has three linearly independent solutions of the form $y = x^r$.
- 5. A force $3\hat{i} + \hat{k}$ acts through the point $2\hat{i} \hat{j} + 3\hat{k}$. Find the torque of the force about the point $\hat{i} + 2\hat{j} \hat{k}$.
- 6. Locate and classify the singular points of the equation $x^{2}(x^{2}-4)\frac{d^{2}y}{dx^{2}} + 3x^{3}\frac{dy}{dx} + 4y = 0.$

GROUP-B

Answer any four questions from the following

 $6 \times 4 = 24$

7. Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC4/Revised & Old/2023

8. Let
$$\vec{F}(t) = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$$
. Find $\int_{1}^{2} \vec{F}(t) \times \frac{d^2\vec{F}(t)}{dt^2} dt$.

- 9. Solve the following differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \log x \cdot \sin(\log x)$.
- 10. If $\vec{r} = a \cos t \hat{i} + a \sin t \hat{j} + at \tan \alpha \hat{k}$, then prove that

$$\left[\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right] = a^3 \tan \alpha$$

- 11. Solve the equation $(D^2 2D + 1)y = xe^x$ by the method of undetermined coefficients.
- 12. Solve: $\frac{dx}{dt} 7x + y = 0$ $\frac{dy}{dt} 2x 5y = 0$

GROUP-C

Answer any two questions of the following

 $12 \times 2 = 24$

- 13. (a) Find the power series solution of $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} xy = 0$ about the point x = 0.
 - (b) Show that the vector field defined by $\vec{F} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$ is 6 irrotational. Find the scalar potential u such that $\vec{F} = \operatorname{grad} u$.
- 14.(a) Solve $x^2 \frac{d^2y}{dx^2} x(x+2)\frac{dy}{dx} + (x+2)y = x^3$ given that y = x and $y = xe^x$ are two linearly independent solutions of the corresponding homogeneous system.
 - (b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, prove that $\operatorname{curl}(f(r)\vec{r}) = \vec{0}$.
- 15.(a) Solve $\frac{d^2y}{dx^2} \frac{2}{x} \frac{dy}{dx} + \left(a^2 + \frac{2}{x^2}\right) y = 0$ by reducing to normal form.
- (b) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = yz + zx + xy, prove that $(\operatorname{grad} u) \cdot \{(\operatorname{grad} v) \times (\operatorname{grad} w)\} = 0$.
- 16.(a) Solve $(D^3 D^2 + 3D + 5)y = e^x \cos 3x$.
 - (b) If $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$, where C is the curve: $x^2 + y^2 = 1$, z = 0, then find the value of $\oint_C \vec{F} \cdot d\vec{r}$.

___×__