

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours Ist Semester Examination, 2022

GE1-P1-PHYSICS

Time Allotted: 2 Hours

The question paper contains GE-1A and GE-1B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

GE-1A

Mechanics
GROUP-A

Answer any five questions from the following

$$
1 \times 5=5
$$

2. What does 'rotational invariance of space' imply?
3. What is meant by a conservative force?
4. Find out the dimension of modulus of rigidity.
5. Write down the differential equation of a simple harmonic motion.
6. What do you understand by the centre of mass of a system of particles?
7. Give an example of inertial frame of reference.
8. Write the expression of relativistic addition of two velocities.

GROUP-B

Answer any three questions from the following

9. (a) For what value of m, the two vectors $\bar{A}=m \hat{i}+5 \hat{j}+3 \hat{k}$ and $\bar{B}=-2 \hat{i}+\hat{j}-\hat{k}$ will be perpendicular to each other?
(b) If $|\bar{A}+\vec{B}|=|\bar{A}-\bar{B}|$, then prove that \bar{A} and \vec{B} are perpendicular to each other.

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2022

10. For a particle subjected to a central force prove that:
(a) the particle moves in a fixed plane.
(b) the areal velocity of the radius vector remains constant.
11. On the basis of Lorentz transformation explain:
(a) length contraction
(b) time dilation.
12. Solve the following differential equation:

$$
y^{2} y^{\prime}-x^{2}=0 \text { given that } y(1)=0
$$

13. A particle of mass 2 kg is initially at rest at co-ordinates $(-2,+4) \mathrm{m}$. At $t=0$ it is acted upon by two forces $\bar{F}_{1}=(-6 \hat{i}-4 \hat{j}) \mathrm{N}$ and $\bar{F}_{2}=(-3 \hat{i}+7 \hat{j}) \mathrm{N}$

Examine the system and work out:
(a) the velocity of the particle, in vector component form, at $t=10 \mathrm{sec}$.
(b) the displacement of the particle, in vector component form at $t=10 \mathrm{sec}$.

GROUP-C

Answer any two questions from the following

14.(a) Derive an expression for the total energy of a harmonic oscillator.
(b) What are the characteristics of SHM?
(c) A body executes SHM of amplitude 1.0 cm and frequency 12 cycles $/ \mathrm{second}$. What is the velocity when displacement is 0.5 cm ?
15.(a) Define elastic limit, perfect elasticity and Poisson's ratio. Write the relation between Young's modulus (Y), Bulk's modulus (k) and Poisson's ratio.
(b) If the Young's modulus (Y) and Bulk's modulus of elasticity (k) for silver be 7.25×10^{11} dyne $/ \mathrm{cm}^{2}$ and 11×10^{11} dyne $/ \mathrm{cm}^{2}$ respectively, find the Poisson's ratio for silver.
16. Write short notes on:
(a) Twisting couple on a cylinder
(b) Kepler's law of planetary motion.
17.(a) Show that if the total torque acting on a particle is zero then, the angular momentum is always conserved,
(b) Given, $\vec{A}=x^{2} z \hat{i}-2 y^{3} z^{3} \hat{j}+x y^{2} z \hat{k}$, find $\nabla \cdot \vec{A}$ at the point $(0,1,1)$.
(c) Prove that: $\vec{A} \times(\vec{B} \times \vec{C})+\bar{B} \times(\bar{C} \times \vec{A})+\bar{C} \times(\bar{A} \times \bar{B})=0$

GE-1B

Thermal Physics and Statistical Mechanics

GROUP-A

1. Answer any five questions from the following:
(a) What are extensive thermodynamic variables? Give an example.
(b) Write the dimension of entropy.
(c) Why C_{P} is greater than C_{V} ?
(d) In cyclic process write the form of first law of thermodynamics.
(e) What is the relation between mean free path and density of a gas?
(f) Write the physical significance of entropy.
(g) Give an example of second order phase transition.
(h) Draw indicator diagram for isochoric process.

GROUP-B

Answer any three questions from the following
2. (a) Find the expression of work done during adiabatic process.
(b) 5.6 litre of helium gas at STP is adiabatically compressed to 0.7 litre. Taking the initial temperature T_{1}, find the expression of work done in the process. Given $\gamma=5 / 3$.
3. (a) Show that for an irreversible thermodynamic process change in entropy is positive.
(b) State the third law of thermodynamics.
4. Prove the first $T-d S$ equation

$$
T d S=C_{V} d T+T \alpha E_{T} d V
$$

Where, α is the volume coefficient expansion, $E_{T}=$ Thermal elasticity.
5. Find the coefficient of viscosity of a gas due to transport phenomena for vertical case.
6. (a) State and explain law of equipartition of energy.
(b) A system is composed of two level atoms, the excited state is 0.1 eV above the ground state. At $t=27^{\circ} \mathrm{C}$ find the fraction of atoms at the first excited state.

GROUP-C

Answer any two questions from the following

7. (a) Represent a Carnot cycle on (i) P-V diagram" (ii) T-S diagram and hence find the efficiency of a Camot cycle.
(b) Show that working between the same temperature, no heat engine can be more efficient than a reversible one.
(c) A Carnot engine has an efficiency of 30%. Its efficiency is to be increased to 50%. By what must the temperature of the source be increased if the sink is at temperature 300 K ?
8. (a) Establish Maxwell's four thermodynamic relations.
(b) Prove that:
(i) $U=\left\{\frac{\partial(F / T)}{\partial(1 / T)}\right\}_{V}$
(ii) $F=\left\{\frac{\partial(G / P)}{\partial(1 / P)}\right\}$
9. (a) What are assumptions of MB-Statistics?
(b) An ideal gas containing N-particles at $T=300 \mathrm{~K}$, obeys the MB-Statistics. Calculate
(i) Average thermal energy in eV .
(ii) Internal energy and
(iii) Heat capacity at constant volume.
10.(a) State Wien's displacement law and explain in graph for the two different temperatures.
(b) Derive the expression for Joule-Thomson coefficient.
(c) Define inversion temperature and Boyle temperature and write the relation between this two temperatures.

 UNIVERSITY OF NORTH BENGAL
 B.Sc. Programme 1st Semester Examination, 2022

 DSC1/2/3-P1-PHYSICS

 DSC1/2/3-P1-PHYSICS

 Mechanics

 Mechanics}

Full Marks: 40
Time Allotted: 2 Hours
The figures in the margin indicate full marks.

GROUP-A / বিভাগ-ক/ समूह-क

1. Answer any five questions from the following:

নিন্নলিशিত যে-কোন পাঁটটি প্রশ্নের উত্তর দাওঃ
कुनै पाँच प्रश्नहरूको उत्तर लेख -

$$
1 \times 5=5
$$

(a) Give two examples of conservative force.

সংরক্ষী বলের দুটি উদাহরণ দাও।
संरक्षी बलको दुईवटा उदाहरण देऊ।
b) What is the difference between real force and virtual force?

বাস্তব বল ও অলীক বলের মধ্যে পার্থক্ कী ?
'real force' र 'virtual force' माझ के भिन्नता छ ?
(c) What is solenoidal vector?

সলিनয়ডাল ভেক্টর কী ?
'Solenoidal vector' भनेको के हो ?
(d) What is the limiting value of Poisson's ratio?

থয়সন অनুপাতের মানের তাত্রিক সীমা কত ?
'Poisson's ratio' को सीमित मूल्य के हो ?
(e) What is the unit of torque?

টর্কের একक को ?
'Torque' को एकाइ के हो ?
(f) What do you mean by 'Damped Vibration'?
‘অবমन्দিত কন্গন' কাকে বলে ?
'Damped Vibration' भन्नाले के बुडिन्छ ?
(g) What is the value of universal gravitational constant in SI system?

'Universal gravitational constant' को SI सिस्टममा मान के हो ?
(h) Write down the two postulates of Einstein's special theory of relativity.

आই্নস্টাইন-এর্র বিশেষ আপেপpি巾তাবাদের স্বীকার্গ দুটি লেখ। आइन्स्टाइनको सापेक्षताको विशेष सिद्धान्तको दुईवटा अभिधारणाहरू लेख।
GROUP-B / বिভाগ-थ / समूह-ख
Answer any three questions from the following
2. (a) Find the unit vector which is perpedicular to both the vectors:

$$
\vec{A}=\hat{i}+\hat{j}+\hat{k} \text { and } \vec{B}=2 \hat{i}-\hat{j}
$$

একটি একক ভেক্টর নির্ণয় কর যা $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ এবং $\vec{B}=2 \hat{i}-\hat{j}$ ভেক্টর দুটির উভয়েরই উপর লম্ব। एकाइ भेक्टर खोज जुन $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ र $\vec{B}=2 \hat{i}-\hat{j}$ सदीशहरूमा लम्ब हुन्छ।
(b) Prove that $\frac{d}{d t}(\phi \vec{A})=\phi \frac{d \vec{A}}{d t}+\frac{d \phi}{d t} \vec{A}$.

প্রমাণ করঃ$\frac{d}{d t}(\phi \vec{A})=\phi \frac{d \vec{A}}{d t}+\frac{d \phi}{d t} \vec{A}$ ।
$\frac{d}{d t}(\phi \vec{A})=\phi \frac{d \vec{A}}{d t}+\frac{d \phi}{d t} \vec{A}$ प्रमाणित गर्नुहोस् ।
3. (a) Define gravitational potential energy. মহাকর্ষীয় স্থিতিশক্তি বলতে কী বোঝ?
गुरुत्व क्षमता ऊर्जा परिभाषित गर्नुहोस्।
(b) Find the expression of gravitational potential energy for a system of masses.

বস্তুসংস্থার মহাকর্ষীয় স্থিতিশক্তির রাশিমালা নির্ণয় কর।
द्रव्यमानको प्रणालीको लागि गुरुत्वाकर्षण क्षमता ऊर्जाको इक्स्प्रेशन पत्ता लगाउनुहोस्।
4. (a) Prove that the total energy of a simple harmonic motion is constant.

প্রমাণ কর যে সরল দোলগতির মোট শক্তি ধ্রুবক হয়।
प्रमाणित गर्नुहोस् कि साधारण हार्मोनिक गतिको कुल ऊर्जा स्थिर हुन्छ।
(b) All simple harmonic motions are periodic motion but all periodic motions are not simple harmonic motion - Explain.
সব সর্রল দোলগতি পর্যাবৃত্ত গতি কিন্টু সব পর্যাবৃত্ত গতি সরল দোলগতি নয় — ব্যাখ্যা কর।
सबै साधारण हार्मोनिक गति आवधिक गति हुन् तर सर्वे आवधिक गतिहरू साधारण हार्मोनिक गतिहरू होइनन्। व्याख्या गर्नुहोस्।
5. Solve: $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}$

সমাধান করঃ $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}$
समाधान गर : $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{2}$
6. (a) Define rigidity modulus.

কৃত্তন హুলাক্কের সংষ্ঞা দাও।
कठोरता मोडुलस (Rigidity Modulus) परिभाषित गर।

UG/CBCS/B.Sc./Programme/1st Sem./Physics/PHYSDSC1/2022
(c) Show that work done per unit volume for shearing strain $=\frac{1}{2} \times$ shearing strain \times shearing stress.
কৃত্তন বিকৃতির ক্ষেত্রে দেখাও যে, প্রতি একক আয়তনে কৃতকার্য $=\frac{1}{2} \times$ কৃত্তন বিকৃতি \times কৃত্ন পীড়ন। देखाउनुहोस् कि शियरिड स्ट्रेनको लागि प्रति इकाइ भोल्युम गरिएको काम $\frac{1}{2}$ शियरिङ स्ट्रेन \times शियरिड स्ट्रेस हुन्छ।
9. (a) Establish the differential equation of a simple harmonic motion (SHM) and find its solution.
সরন দোলগতির (SHM) অবকল সমীকরণটি প্রতিষ্ঠা করো এবং এর সমাধান কর।
साधारण हार्मोनिक गति (SHM) को विभेदक समीकरण स्थापना गर ₹ यसको समाधान खोज।
(b) The equation of a simple harmonic motion is given by $x=A \sin (\omega t+\delta)$ show that the relation between velocity v and acceleration a is $\omega^{2} v^{2}+a^{2}=A^{2} \omega^{4}$.
একটি সরল দোলগতির সমীকরণ $x=A \sin (\omega t+\delta)$ । দেখাও বে, বেগ v ও ত্বরণ a-এর মধ্যে সম্পर्কটি হन $\omega^{2} v^{2}+a^{2}=A^{2} \omega^{4}$.
साधारण हार्मोनिक गतिको समीकरण $x=\Lambda \sin (\omega t+\delta)$ द्वारा दिइएको छ। देखाउनुहोस् कि वेग (v) र प्रवेग (a) बीचको सम्बन्ध $\omega^{2} v^{2}+a^{2}=A^{2} \omega^{4}$ हो।
10.(a) Explain briefly "length contraction" and "time dilation" in special theory of relativity.
বিশেয আপেক্ষিকতাবাদের নিরিথে "দদর্ঘ্য সংকোচন" ও "সময়ের বিস্তৃতি" সংক্ষেপে ব্যাখ্যা কর।
सापेक्षताको विशेष सिद्धान्तमा 'लम्बाइ संकुचन' र 'समय विस्तार' संक्षिप्त रूपमा व्याख्या गर।
(b) The half-life period of a particle moving with velocity $2.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is found to be $2 \times 10^{-7} \mathrm{~s}$. Determine the actual half-life period of the particle.
$2.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$ বেগে গতিশীল কণার অর্ষজীবनকাन গাওয়া গেল $2 \times 10^{-7} \mathrm{~s}$ । कণাটির প্রকৃত অর্ধজীবनকাল निর্ণয় কর।
वेग $2.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$ सँग चल्ने कणको अर्ध-जीवन अवधि $2 \times 10^{-7} \mathrm{~s}$ छ भने, कणको वास्तविक अर्ध-जीवन अवधि निर्धारण गर।
(c) Two particles are moving with velocity $0.8 c$ towards each other. Find their relative velocity. $c=$ velocity of light.
 दुई कणहरू एक अर्का अर्फ $0.8 c$ को गतिगा सदैर्छन्। तिनीहरूको सापेक्ष गति पत्ता लगाउनुहोस। $c=$ प्रकाशको वेग।

