उत्तर बन
 समानो मन्न: सभिति: समानी

UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 2nd Semester Examination, 2022

GE1-P2-Statistics

Fundamental of Probability Theory

GROUP-A

1. Answer any five questions:
(a) If $P(A \cup B)=\frac{5}{6}, P(A \cap B)=\frac{1}{3}$ and $P\left(A^{c}\right)=\frac{1}{2}$, then show that A and B are independent.
(b) The mean and variance of a binomial variate X are 4 and $\frac{4}{3}$. Find $P(X=1)$.
(c) Show that the chance of throwing an odd number with a die is $\frac{1}{2}$.
(d) What is the chance that a non-leap year selected at random will contain 53 Sundays?
(e) For a binomial distribution with mean 5 and S.D. 2, find the mode.
(f) For what value of $k, f(x, y)=k e^{-(x+y)}, x \geq 0, y \geq 0$ will represent probability density function?
(g) State the Central Limit Theorem.
(h) State two properties of hypergeometric distribution.

GROUP-B

2. Answer any three questions:
(a) State and prove Bayes' Theorem.
(b) Prove that the variance of binomial distribution is npq.
(c) Derive Poisson distribution as the limit of binomial distribution.
(d) Two persons toss a true coin n times each. Show that the probability of their scoring the same number of heads is $\binom{2 n}{n} 2^{-2 n}$.
(e) If X follows binomial distribution with parameter n and p then prove that

$$
P[X \text { is even }]=\frac{1}{2}\left[1+(q-p)^{n}\right] \text { where } p+q=1
$$

GROUP-C

3. Answer any two questions:
(a) (i) Show that the expectation of the product of two independent random variables is equal to the product of their expectations.
(ii) Show that for the binomial distribution

$$
\mu_{r+1}=p(1-p)\left(n r \mu_{r-1}+\frac{d \mu_{r}}{d p}\right)
$$

where the symbols have their usual meanings.
(b) (i) In a distribution exactly normal, 7% of the items are under 35 and 89% are under 63 , what are the mean and s.d. of the distribution?
(ii) Find the points of inflextion of the normal curve.
(c) (i) For a normal distribution show that odd order moments about mean are zero.
(ii) Find the probability that at most 5 defective fuses will be found in a box of 200 fuses, if experience show that 2% of such fuses are defective.
(d) (i) Find the mode of the Poisson distribution. 5
(ii) A coin is tossed until a head appears. What is the expectation of the number 5 of tosses?

