

B.Sc. Honours 2nd Semester Examination, 2021

CC3-MATHEMATICS

REAL ANALYSIS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A Answer all questions

1.	(a)	Find the	derived	set o	of the	set	$A = (0, 2) \cup (1, 3) \cap Q$, where Q is the set of	2
		rational n						

(b) Find all limit points of the sequence $(\sin n)_{n \in \mathbb{N}}$

2

 $2 \times 5 = 10$

(c) Find a bijection from Z^+ to $Z^+ \times Z^+$ where Z^+ is the set of all positive integers.

2

2

(d) Construct a sequence $(r_n)_{n\in\mathbb{N}}$ of rational numbers that converges to a given real number r.

(e) Examine if for any $A \subset \mathbb{R}$, $\overline{A} = \{x \in A ; \exists \text{ a sequence } (x_n) \text{ in } A \text{ so that } x_n \to x \}$.

2

GROUP-B

Answer all questions

 $10 \times 3 = 30$

2. (a) Prove that the series
$$\frac{1}{x+1} + \frac{x}{x+2} + \frac{x^2}{x+3} + \dots (x>0)$$
 converges if $x < 1$ and 5 diverges if $x \ge 1$.

(b) If
$$\sum_{n=1}^{\infty} a_n^2$$
 is convergent, prove that $\sum_{n=1}^{\infty} \frac{a_n}{n}$ is also convergent $(a_n > 0 \ \forall n \in \mathbb{N})$.

3. (a) Show that
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$$
.

(b) Find
$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots = ?$$

- 4. (a) Show that finite union of compact subsets of \mathbb{R} is compact. What about infinite union in this regard? 5+2
 - (b) Show that arbitrary intersection of compact subsets of \mathbb{R} is compact.

GROUP-C

Answer all questions

 $5 \times 2 = 10$

- 5. Check if the family of all finite subsets of the set of natural numbers is countable.
- 6. Check if the family $\zeta = \left\{ \left(r_n \frac{1}{2^{n+1}}, r_n + \frac{1}{2^{n+1}} \right); n \in \mathbb{N} \right\}$ is an open cover of \mathbb{R} 5 where $(r_n)_{n \in \mathbb{N}}$ is a linear array of all rational numbers.

GROUP-D

Answer all questions

 $5 \times 2 = 10$

- 7. Let the sequence (x_n) of real numbers converges to the real number x and $p: \mathbb{N} \longrightarrow \mathbb{N}$ is a bijection. Check if $x_{p(n)} \to x$.
- 8. Let $f: D \to \mathbb{R}$, $D \subset \mathbb{R}$ be a continuous function and (x_n) be a sequence in D.
 - (a) Examine if $(f(x_n)) \to f(x)$ if $x_n \to x \in D$.

3

(b) Examine if $(f(x_n))$ is a Cauchy sequence if (x_n) is Cauchy.

2

____×___

B.Sc. Honours 2nd Semester Examination, 2021

CC4-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer *all* the questions:

 $2 \times 5 = 10$

- (a) Calculate $\lim_{t \to 3} \vec{r}(t)$, where $\vec{r}(t) = \left(\frac{2t-4}{t+1}\right)\hat{i} + \left(\frac{t}{t^2+1}\right)\hat{j} + (4t-3)\hat{k}$.
- (b) Examine whether the vector valued function $\vec{r}(t) = t^2 \hat{i} + e^t \hat{j} + \frac{1}{t+3} \hat{k}$ is continuous at t = -3 or not.
- (c) Find the angle between the normals to the following surfaces $y^2 + z^2 = 9$ and $2(x^2 z^2) = 3y$ at the point (2, 2, 1).
- (d) Show that the integral $\int_C y dx + x dy$ is independent of the path C joining the points P(0, 1) and Q(1, 2).
- (e) Find the particular integral of the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = xe^{-x}$.

GROUP-B

2. Answer *all* the questions:

 $10 \times 3 = 30$

- (a) (i) Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 4y = e^x \cos x.$ 5+5=10
 - (ii) Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$.
- (b) (i) Solve the Euler's equation $x^2 \frac{d^2 y}{dx^2} 9x \frac{dy}{dx} + 25y = 0$. 5+5=10
 - (ii) Solve: $\frac{dx}{dt} + \frac{dy}{dt} 2y = 2\cos t 7\sin t$ $\frac{dx}{dt} \frac{dy}{dt} + 2x = 4\cos t 3\sin t$

- (c) (i) Evaluate the integral of $\vec{F} = (yz + zx)\vec{i} + xz\vec{j} + (xy + 2z)\vec{k}$ along the circle $x^2 + y^2 = 1$, z = 1 from (0, 1, 1) to (1, 0, 1).
 - (ii) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x^2 3y^2)\vec{i} + (y^2 2x^2)\vec{j}$ s and C the closed curve in xy plane given by $x = 3\cos t$, $y = 2\sin t$, $0 \le t \le 2\pi$, C is described in the anti-clockwise sense.

GROUP-C

3. Answer *all* the questions:

- $5 \times 2 = 10$
- (a) Solve $(D^2 2D + 4)y = (x + x^3)e^{2x}$ by method of undetermined coefficient.
- (b) Apply Picard's method up to third approximation to solve

$$\frac{dy}{dx} = 3e^x + 2y$$
; $y(0) = 0$.

GROUP-D

4. Answer *all* the questions:

- $5 \times 2 = 10$
- (a) Show that equation of the tangent line to the curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$ at the point t = 1 is $2(x-1) = (y-1) = z \frac{2}{3}$.
- (b) Solve: $\frac{dx}{dt} + 2x 3y = t$ $\frac{dy}{dt} 3x + 2y = e^{2t}$

B.Sc. Programme 2nd Semester Examination, 2021

DSC2-MATHEMATICS

ALGEBRA

Full Marks: 60

ASSIGNMENT

The questions are of equal value. The figures in the margin indicate full marks.

GROUP-A

বিভাগ-ক

1. Answer *all* the questions from the following: নিম্নলিখিত *সবগুলি* প্রশ্নের উত্তর দাওঃ

 $2 \times 5 = 10$

- (a) Verify Cayley Hamilton theorem for the square matrix $\begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}$.
 - $\begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}$ বর্গ ম্যাদ্রিক্সটির সাপেক্ষে Cayley Hamilton উপপাদ্যটি যাচাই কর।
- (b) A relation ρ is defined on \mathbb{Z} by $x\rho y$ iff $x^2 y^2$ divisible by 5. Prove that ρ is an equivalence relation on \mathbb{Z} .

অখণ্ড সংখ্যাসমূহের সেট \mathbb{Z} -এর ওপর একটি সম্বন্ধ ho -এর সংজ্ঞা এইরূপঃ

$$x \rho y \Leftrightarrow x^2 - y^2$$
, 5 দ্বারা বিভাজ্য।

দেখাও যে ho একটি সমতুল্যতা সম্বন্ধ (equivalence relation)।

(c) Use Descartes' rule of signs to find the number of positive roots of the equation $x^6 + x^4 + x^2 + x + 3 = 0$.

'Descartes' rule of sign' (Descarte-এর চিহ্ন সংক্রান্ত সূত্রগুলো দ্বারা $x^6+x^4+x^2+x+3=0$ সমীকরণটির ধনাত্মক বীজগুলির সংখ্যা নির্ণয় কর।

(d) If $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, find the rank of $2A - A^2$.

যদি
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 হয়, তবে $2A - A^2$ -এর rank নির্ণয় কর।

(e) Show that the map $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^{2020}$ is neither injective nor surjective, \mathbb{R} being the set of reals.

 $\mathbb R$ যদি বাস্তব সংখ্যার সেট হয় এবং $f:\mathbb R \to \mathbb R$ অপেক্ষকটি $f(x)=x^{2020}$ দ্বারা সংজ্ঞাত, তাহলে প্রমাণ কর f অপেক্ষকটি একৈক (injective) কিংবা উপরি (surjective) কোনোটাই নয়।

GROUP-B

বিভাগ-খ

Answer all the questions from the following

 $12 \times 3 = 36$

নিম্নলিখিত সবগুলি প্রশ্নের উত্তর দাও

2. (a) Prove that
$$\tan\left\{i\log\frac{a-ib}{a+ib}\right\} = \frac{2ab}{a^2-b^2}$$
.

প্রমাণ কর $\tan\left\{i\log\frac{a-ib}{a+ib}\right\} = \frac{2ab}{a^2-b^2}$

(b) Reduce the equation $x^3 - 3x^2 + 12x + 16 = 0$ to its standard form and then solve the equation by Cardan's method.

 $x^3 - 3x^2 + 12x + 16 = 0$ সমীকরণটিকে ইহার Standard form-এ রূপান্তরিত কর এবং Cardan পদ্ধতিতে উক্ত সমীকরণটিকে সমাধান কর।

(c) Prove that the roots of the equation $\frac{1}{x+a_1} + \frac{1}{x+a_2} + \cdots + \frac{1}{x+a_n} = \frac{1}{x}$ are all

4

real, where a_1, a_2, \dots, a_n are all positive real numbers.

প্রমাণ কর যে $\frac{1}{x+a_1}+\frac{1}{x+a_2}+\cdots+\frac{1}{x+a_n}=\frac{1}{x}$ সমীকরণটির সকল বীজগুলি বাস্তব, যেখানে a_1, a_2, \dots, a_n সকলে ধনাত্মক বাস্তব সংখ্যা

3. (a) Show that $19^{20} \equiv 1 \pmod{181}$.

1269u + 297v = 135.

3

প্রমাণ কর যে 19²⁰ ≡ 1 (mod 181)।

(b) Using Euclidean Algorithm, find two integers u and v satisfying

4

1269u + 297v = 135 সমীকরণকে সীদ্ধ করে এমন দুটি পূর্ণসংখ্যা u এবং v কে Euclidean algorithm-এর সাহায্যে নির্ণয় কর।

(c) Use Principle of Mathematical Induction to prove that for all $n \in \mathbb{N}$,

5

$$1.1! + 2.2! + \cdots + n.n! = (n+1)! - 1$$

গাণিতিক আবেশ নীতির (Principle of Mathematical Induction) দ্বারা দেখাও যে সকল $n \in \mathbb{N}$ -এর জন্য $1.1! + 2.2! + \cdots + n.n! = (n+1)! - 1.$

4. (a) Use Cayley-Hamilton theorem to find A^{100} , where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. 4

যদি
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 হয় তাহলে Cayley-Hamilton উপপাদ্যের সাহায্যে A^{100} এর মান নির্ণয়

কর।

UG/CBCS/B.Sc./Programme/2nd Sem./Mathematics/MATHDSC2/2021

(b) Find the eigenvalue and the corresponding eigenvector of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$. 5

্রি 2 1 | ম্যাদ্রিক্সটির আইগেনমান (Eigenvalue) এবং ইহার আইগেন ভেক্টর 0 2 2 |

(eigenvector) গুলি নির্ণয় কর।

(c) Let λ_1 and λ_2 be two distinct eigen values of a real square matrix A. If u and v are eigen vectors of A corresponding to the eigen values λ_1 and λ_2 respectively, examine whether u+v an eigen vector of A.

ধর λ_1 এবং λ_2 কোন একটি বাস্তব বর্গ ম্যাট্রিক্স A-এর দুটি পৃথক আইগেন মান। যদি u এবং v যথাক্রমে λ_1 এবং λ_2 আইগেন মানের আইগেন ভেক্টর হয় তবে u+v, A ম্যাট্রিক্সটির একটি আইগেন ভেক্টর হবে কিনা যাচাই কর।

GROUP-C

বিভাগ-গ

Answer *all* the questions from the following নিম্নলিখিত *সবগুলি* প্রশ্নের উত্তর দাও

 $7 \times 2 = 14$

5. (a) If a, b, c are three positive rational numbers then prove that যদি a, b, c তিনটি ধনাত্মক মূলদ (Rational) সংখ্যা হয় তাহলে প্রমাণ করঃ

5

$$\left(\frac{a^2 + b^2 + c^2}{a + b + c}\right)^{a+b+c} \ge a^a b^b c^c \ge \left(\frac{a+b+c}{3}\right)^{a+b+c}$$

(b) If A, B are square matrices of same order over the field F, A is non-singular prove that the matrices B and ABA^{-1} have the same eigen values.

2

যদি A এবং B দুটি সমান ক্রম (order)-এর বর্গম্যাদ্রিক্স যেখানে A হল non-singular, তাহলে প্রমাণ কর B এবং ABA^{-1} ম্যাদ্রিক্সদ্বয়ের আইগোন মানগুলি একই হবে।

6. Determine the conditions for which the system of equations

2+2+3=7

$$x+y+z=1$$

$$x+2y-z=b$$

$$5x+7y+az=b$$

admits of (i) only one solution (ii) no solution (iii) many solutions.

একটি মাত্র সমাধান (i) কোন্ সমাধান নেই (ii) একাধিক সমাধানের জন্য

$$x+y+z=1$$

$$x+2y-z=b$$

$$5x+7y+az=b^{2}$$

সমীকরণ তন্ত্রের (system of equations) শর্তগুলি উল্লেখ কর।

___x__

B.Sc. Honours 2nd Semester Examination, 2021

GE-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE-I, MATHGE-II, MATHGE-III, MATHGE-IV & MATHGE-V.

The candidates are required to answer any *one* from the *five* courses. Candidates should mention it clearly on the Answer Book.

MATHGE-I

Cal. Geo and DE.

GROUP-A

1. Answer *all* the questions from the following:

 $2 \times 5 = 10$

- (a) Find the asymptotes parallel to coordinate axes of the curves $y = \tan^{-1} x$.
- (b) Evaluate: $\lim_{x \to a} \left(2 \frac{a}{x} \right)^{\tan \frac{\pi x}{2a}}$
- (c) Solve: $x dy y dx = \cos \frac{1}{x} dx$
- (d) Evaluate: $\int_{0}^{1} \frac{x^6}{\sqrt{1-x^2}} dx$
- (e) Find the equation of a sphere whose great circle is $x^2 + y^2 + z^2 + 10y 4z = 8$, x + y + z = 3.

GROUP-B

Answer all the questions from the following

 $12 \times 3 = 36$

- 2. (a) Find the reduction formula for $\int (\log x)^n x^m dx$ and hence find the value of $\int (\log x)^2 x dx$.
 - (b) Find the volume of the solid obtained by revolution the region bounded by y = x and $y = x^2 2x$ about the line y = 5.

(c) Solve:
$$\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$$

- 3. (a) Determine the point of inflection for $y = \sin^2 x$, $0 \le x \le 2\pi$. 3
 - (b) If $x^{\frac{2}{3}} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$ is the envelope of the lines $\frac{x}{a} + \frac{y}{b} = 1$, where a, b are variable 4 parameter and c is a constant, then prove that $a^2 + b^2 = c^2$.
 - (c) A variable sphere passes through $(0, 0, \pm c)$ and cuts the lines $y = x \tan \alpha$, z = c5 and $y = -x \tan \alpha$, z = -c in points P and P'. If PP' = 2a (a is a constant), show that the centre of the sphere lies on the circle $x^2 + y^2 = (a^2 - c^2)\csc^2 2\alpha$, z = 0.
- 4. (a) Find the value of a and b if the $\lim_{x\to\infty} \frac{a\sin^2 x + b\log\cos x}{x^4} = -\frac{1}{2}$. 3
 - (b) Solve: $\frac{dy}{dx} + 2xy = x^2 + y^2$ 4
 - (c) Reduce the canonical form $5x^2 20xy 5y^2 16x + 8y$ 5

GROUP-C

$7 \times 2 = 14$ Answer all the questions from the following

- 5. (a) Find the 21st derivative of $y = \frac{x^3}{x^2 3x 2}$. 3
 - 4
- (b) Trace the curve $x^2y^2 = (a+y)^2(a^2-y^2)$. 6. (a) Solve: $(1+y^2) dx = (\tan^{-1} y x) dy$ 3
 - (b) If $I_m = \frac{d^m}{dx^m}(x^m \log x)$, prove that $I_m = mI_{m-1} + (m-1)!$. Hence prove that 4 $I_m = \left[\log x + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{m}\right] m!.$

MATHGE-II

Algebra

GROUP-A

- 1. Answer *all* the questions from the following: $2 \times 5 = 10$
 - (a) Find the value of $(-i)^{1/4}$. 2

- (b) Find the values of k for which the equation $x^4 + 4x^3 2x^2 12x + k = 0$ has four real distinct roots.
- (c) Let *a*, *b*, *c* be real numbers. Show that

$$(a+b-c)^2 + (b+c-a)^2 + (c+a-b)^2 \ge ab+bc+ca$$

- (d) Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + x$, $\forall x \in \mathbb{R}$ is surjective or not.
- (e) Find the eigenvalues and eigenvectors of the matrix $7I_7$.

GROUP-B

Answer all the questions from the following

 $2 \times 3 = 36$

- 2. (a) Let z_1 , z_2 be two complex numbers such that z_1/z_2 is real. Prove that the points representing z_1 and z_2 in the complex plane are collinear with the origin.
 - (b) Let $z = \cos \theta + i \sin \theta$ and m be a positive integer. Show that

$$(1+z)^m + \left(1 + \frac{1}{z}\right)^m = 2^{m+1}\cos^m\frac{\theta}{2}\cos\frac{m\theta}{2}$$

- (c) Show that $\tan 4\theta = \frac{4 \tan \theta 4 \tan^3 \theta}{1 6 \tan^2 \theta + \tan^4 \theta}$.
- 3. (a) Apply Descartes' Rule of signs to find the nature of the roots of the equation $x^6 3x^2 2x + 3 = 0$.
 - (b) If $ax \equiv ay \pmod{m}$ where a is prime to m then prove that $x \equiv y \pmod{m}$.
 - (c) Let α , β , γ be the roots of the equation $x^3 + 2x^2 3x + 1 = 0$. Find the equations whose roots are $\alpha\beta \gamma^2$, $\beta\gamma \alpha^2$, $\gamma\alpha \beta^2$ and deduce the condition that the roots of the given equation may be in geometric progression.
- 4. (a) Prove that the relation $\rho = \{(a, b) : a \equiv b \pmod{3} ; a, b \in \mathbb{Z}\}$ is an equivalence relation on the set of integers \mathbb{Z} . Also, find the sets $A = \{a : (a, 1) \in \rho\}$, $B = \{a : (a, 2) \in \rho\}$ and $C = \{a : (a, 3) \in \rho\}$ where $a \in \mathbb{Z}$, show that $\mathbb{Z} = A \cup B \cup C$ and $A \cap B = B \cap C = C \cap A = \phi$.
 - (b) Reduce the following matrix: 4+1

into row reduced echelon form and hence find its rank.

GROUP-C

Answer all the questions from the following

 $7 \times 2 = 14$

5. (a) Prove that $1! \cdot 3! \cdot 5! \cdot \cdots \cdot (2n-1)! > (n!)^n$.

- 3
- (b) If x_0, x_1, \dots, x_{n-1} are the roots of $x^n 1 = 0$, then prove that $(x_0 x_1)(x_0 x_2)....(x_0 x_{n-1}) = n$.
- 6. (a) Use Cayley-Hamilton Theorem to find A^{2021} , where $A = \begin{bmatrix} 1 & 7 \\ 0 & 1 \end{bmatrix}$.
- 3

(b) Determine the conditions for which the system of equations

$$x + y + z = b$$

$$2x + y + 3z = b + 1$$

$$5x + 2y + az = b^2$$

admits of (i) no solution, (ii) unique solution and (iii) many solutions.

MATHGE-III

Differential Equation and Vector Calculus

GROUP-A

1. Answer *all* the questions from the following:

 $2 \times 5 = 10$

- (a) Show that $\sin 3x$, $\cos 3x$ is not a linearly independent solution of y'' + 9y = 0.
- (b) Solve the equation: $\frac{dx}{dt} = -wy$ and $\frac{dy}{dt} = wx$.
- (c) Find the particular integral of $\frac{d^2y}{dx^2} + y = \cos x$.
- (d) If $\mathbf{r} = 3t\mathbf{i} + 3t^2\mathbf{j} + 2t^3\mathbf{k}$, then find $\frac{d\mathbf{r}}{dt} \times \frac{d^2\mathbf{r}}{dt^2}$.
- (e) Given $\vec{r} = a\cos t \hat{i} + a\sin t \hat{j} + bt \hat{k}$. Show that $\left[\frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \frac{d^3\vec{r}}{dt^3} \right] = a^2b$.

GROUP-B

Answer all the questions from the following

 $12 \times 3 = 36$

2. (a) Solve, using the method of variation parameters, the following differential equation:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = \log x$$

(b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve $C: x^2 + y^2 = 1$, z = 2 in the positive direction from A(1, 0, 2) to B(0, 1, 2) where

$$\mathbf{F} = (y + xz^2)\mathbf{i} + (z - y)\mathbf{j} + (xy - z)\mathbf{k}$$

3. (a) Solve, using the method of undetermined coefficients, the equation

$$(D^2 - 3D)y = x + e^x \sin x , \quad \left(D \equiv \frac{d}{dx}\right)$$

- (b) Evaluate $(\iint \vec{F} \cdot \hat{n}) ds$, where $\vec{F} = yz\hat{i} + x\hat{j} + z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = 4$ included in the first octant between z = 0 and z = 2.
- 4. (a) Solve the differential equation $\frac{d^2y}{dx^2} + a^2y = \sec ax$ with the symbolic operator *D*.
 - (b) If $\vec{F}(x, y, z) = r^n(\vec{\alpha} \times \vec{r})$, then prove that \vec{F} is solenoidal, where $\vec{\alpha}$ is a constant vector, $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$.

GROUP-C

Answer all the questions from the following

 $7 \times 2 = 14$

7

7

6

5. Find the complete solution of the given differential equation

$$(D^3 + 1)y = e^{2x} \sin x + e^{\frac{x}{2}} \sin(\frac{\sqrt{3x}}{2})$$

6. What is an irrotational vector? Find the constants a, b, c so that the vector

$$\vec{F} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$$

is irrotational. Hence, find the potential function V.

MATHGE-IV

Group Theory

GROUP-A

1. Answer *all* the questions from the following:

 $2 \times 5 = 10$

- (a) If $G = (\mathbb{R}, +)$ and $H = (\mathbb{Z}, +)$, then how many distinct left cosets of H in G are there?
- (b) Let $H := \{a+bi : a, b \in \mathbb{R}, ab \ge 0\}$. Prove or disprove that H is a subgroup of \mathbb{C} of all complex numbers under addition.
- (c) Find an isomorphism from the group of integers $(\mathbb{Z}, +)$ to the group of even integers $(2\mathbb{Z}, +)$.

- (d) "Every abelian group is cyclic" Check whether the statement is true or false with proper justification.
- (e) Check whether the set of rational numbers $\mathbb Q$ forms a group with respect to multiplication.

GROUP-B

$12 \times 3 = 36$ Answer all the questions from the following 2. (a) Find the number of elements of order 5 in the group (\mathbb{Z}_{30} , +). 5 (b) Give an example of a group G and it's subgroup H such that [G:H]=2. 2 (c) Let $(\mathbb{Z}, +)$ be the group of integers and $N = \{3n \mid n \in \mathbb{Z}\}$. Prove that N is a normal subgroup of \mathbb{Z} . Let G be a group and $g \in G$. Define a map $\varphi_g : G \to G$ by $\varphi_g(x) := gxg^{-1}$ for all 3. 6+6 $x \in G$. Show that φ_g is an isomorphism from G onto itself. Further, define $\mathcal{L}(G) := \{ \varphi_g : g \in G \}$. Show that $\mathcal{L}(G)$ forms a group under composition of functions. 4. (a) If G is a cyclic group with only one generator, prove that either o(G) = 1 or 4 o(G) = 2. (b) Give an example of two subgroups H, K of a group which are not normal but HK 4 is a subgroup. (c) Suppose a group G has a subgroup of order n. Show that the intersection of all 4 subgroups of G of order n is a normal subgroup of G. **GROUP-C** $7 \times 2 = 14$ Answer all the questions from the following 5. (a) Prove that a cyclic group G of order n is isomorphic to the multiplicative group 5 consisting of all n^{th} roots of unity. 2 (b) Show that for any group G, $G/\{e\} \cong G$. 6. (a) Let N be a normal subgroup of a group G. If N is cyclic, prove that every 4 subgroup of *N* is also normal in *G*. (b) Write down the cyclic decomposition of the following permutation as a product 3 of disjoint cycles $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 6 & 1 & 3 & 2 & 8 & 7 \end{pmatrix}$

MATHGE-V

Numerical Methods

GROUP-A

1. Answer *all* the questions from the following: $2 \times 5 = 10$

- (a) Given that $u = \frac{5xy^2}{z^3}$ find the relative error at x = y = z = 1 when the errors in each of x, y, z is 0.001.
- (b) Write the sufficient condition for convergence of Gauss-Seidel iteration method.
- (c) The equation $x^2 + ax + b = 0$ has two real roots α and β . Show that $x_{k+1} = -(ax_k + b)/x_k$ is convergent near $x = \alpha$ if $|\alpha| > |\beta|$.
- (d) Calculate $\sqrt{25.11} \sqrt{25.1001}$, correct up to three significant figures.
- (e) Show that $\Delta^n[ke^{ax}] = k(e^{ah} 1)^n e^{ax}$.

GROUP-B

Answer all the questions from the following

 $12 \times 3 = 36$

2. (a) Find the polynomial of degree three relevant to the following data by Lagrange formula:

's	6

3	ĸ	- 1	0		2
f((x)	1	Por	1	- 3

- (b) Evaluate $\int_{0}^{3} \frac{dx}{1+2x}$ by Trapezoidal Rule taking n=10 and compare the result with 6 the exact value of the integration.
- 3. (a) Show that the Bisection method converges linearly.

6

(b) Determine a, b and c such that the formula

$$\int_{0}^{h} f(x) dx = h \left[af(0) + bf\left(\frac{h}{3}\right) + cf(h) \right]$$

is exact for polynomial of as high order as possible and determine the order of truncation error.

4. (a) Use Picard's method to solve the differential equation $\frac{dy}{dx} = x^2 + \frac{y}{2}$ at x = 0.5, 6 correct to two decimal places, given that y = 1 when x = 0.

(b) Solve the following system of linear equations by Gauss-Seidel method:

$$20x + 5y - 2z = 14$$

$$3x + 10y + z = 17$$

$$x - 4y + 10z = 23$$

GROUP-C

Answer all the questions from the following

 $7 \times 2 = 14$

7

5. Using modified Euler's method, find y(4.4) by taking h=0.2, from the following differential equation:

$$5x\frac{dy}{dx} + y^2 - 2 = 0$$
, $y(4) = 1$

6. If the third order differences of a function f(x) are constants and

$$\int_{-1}^{1} f(x) dx = k \left[f(0) + f\left(\frac{1}{\sqrt{2}}\right) + f\left(-\frac{1}{\sqrt{2}}\right) \right],$$

then find the value of k.

