उत्तर बन्र समानो मन्त्रः समितिः समानी'
 UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 5th Semester Examination, 2021

DSE-P2-PHYSICS

The figures in the margin indicate full marks. All symbols are of usual significance.

Candidates should also ensure that the chosen section in the paper DSE-2 is different from the chosen section in the paper DSE-1.

The question paper contains paper DSE-2A, DSE-2B and DSE-2C. The candidates are required to answer any one from three sections. Candidates should mention it clearly on the Answer Book.

DSE-2A
Nano-MATERIALS AND APPLICATIONS

GROUP-A

1. Answer any five questions from the following: $1 \times 5=5$
(a) Which factor causes the properties of nano-materials to differ significantly from other materials?
(b) Which nano-materials is used for cutting tools?
(c) A carbon monoxide sensor made of zinconia uses which characteristic to detect any charge?
(d) If the atomic numbers of zirconium, molybdenum, palladium and tin are 40, 42, 46 and 50 respectively, which will be suitable filter for X-radiation from molybdenum?
(e) Define Band gap.1
(f) What do you mean by nanowires? 1
(g) Define grain boundary of a nanoparticle.
(h) What is a quantum-dot laser?

GROUP-B

Answer any three questions from the following $5 \times 3=15$
2. (a) Define Bragg's law. 2
(b) Find the longest wavelength that can be used to analyse a NaCl crystal of 3 interplanar spacing 0.281 nm between its principal planes in first order.
3. (a) Distinguish between direct and indirect band gap. 3
(b) What is exciton? Explain. 2
4. Discuss in detail application of nanosensor systems. 5
5. Explain in detail why band gap of nano-materials increases with size reduction. 5
6. Discuss in detail different types of ball-milling and their advantages. 5
GROUP-C
Answer any two questions from the following$10 \times 2=20$
7. Discuss several bottom up approaches to synthesize nano-materials. 10
8. List out applications of nano-materials and neatly explain them. 10
9. (a) Explain exciton generation and its transport in quantum dots. 6
(b) What is the difference between SEM and STM? 4
10.(a) Explain Coulomb interactions in a dielectric quantum nanostructure. 4
(b) Calculate the self energy and charging energy when the quantum dot is $3+3$ embedded in a semi-conductor with large band gap.
DSE-2BAdvanced Mathematical Physics-I
Time Allotted: 2 Hours

GROUP-A

1. Answer any five questions from the following: $1 \times 5=5$
(a) Find the Laplace transform of the signal

$$
x(t)=t e^{-2|t|}
$$

(b) Draw the graph of $\theta(t-a)-\theta(t-b) . \theta$ is defined as step functions a and b are arbitrary constant.
(c) Show that $\vec{a}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{b}=6 \hat{i}+9 \hat{j}+15 \hat{k}$ do not form any closed surface.
(d) If A is a $(n \times n)$ antisymmetric matrix, show that $|A|=0$ when n is an odd integer number.
(e) Find the dimension of the subspace of $M_{2 \times 2}$ spanned by,

$$
\left(\begin{array}{cc}
1 & -5 \\
-4 & 2
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & 5
\end{array}\right) \text {, and }\left(\begin{array}{cc}
2 & -4 \\
-5 & -7
\end{array}\right)
$$

(f) Two directions \vec{n} and \vec{n}^{\prime} are defined in a spherical coordinate system by the angles θ, α and θ^{\prime}, α respectively. Find the cosine of the angle between them.
(g) Write down the basis of a rank-2 tensor in 2-dimension.
(h) Calculate $\delta_{i i}$ in 3-dimension.

GROUP-B

Answer any three questions from the following

2. Obtain Inverse Laplace Transform of

$$
\frac{s}{1+s^{2}+s^{4}}
$$

3. (a) Define a linear functional on a vector space.
(b) Consider the vector space $\mathbb{R}[x]$ of all polynomials over the field \mathbb{R} of real numbers. Show that the mapping $f(x) \rightarrow \int_{0}^{1} f(x) d x ; f(x) \in \mathbb{R}[x]$ is a linear functional on $\mathbb{R}[x]$.
4. (a) Write down the condition on which a subset of a vector space can be called linearly dependent.
(b) Check the linear independency of the set,
$S=\{(1,3,-4,2),(2,2,-4,0),(1,-3,2,-4),(-1,0,1,0)\}$ in \mathbb{R}^{4}.
5. (a) Construct a scalar from the tensor $A_{k l}^{i j}$.
(b) Define metric tensor.
6. (a) Find out the basis transformation matrix (S) in 3-D when the Cartesian coordinate is rotated with an angle θ about x-axis.
(b) The vector field \vec{a} satisfies $\nabla \cdot \vec{a}=0$ inside some volume V and $\vec{a} \cdot \hat{n}=0$ on the boundary surface $S . \hat{n}$ is the unit vector along \vec{S}. By considering the divergence theorem applied to $T_{i j}=x_{i} a_{j}$, show that $\int_{V} \vec{a} d V=0$.

GROUP-C

Answer any two questions from the following

7. Solve the initial value problem

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0
$$

Where, $y=2$ at $x=0, \frac{d y}{d x}=-4$ at $x=0$.
8. (a) What do you mean by the linear 'dimension' of a vector space?
(b) Justify whether every subspace of a finite dimensional vector space is finite dimensional or not.
(c) Find the dimension of the vector space formed by all (2×2) matrices.
(d) Explain with examples whether the dimension of a vector space depends on its field or not.
9. Let, $A=\left[\begin{array}{ccccc}1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 & 3 \\ -1 & -2 & 0 & 2 & 3\end{array}\right]$.
(a) Solve $A x=0$ and characterize the null space through its basis.
(b) What is the rank of A ? What are the dimensions of the column space, row space and left null space of A ?
(c) Find the complete solution of $A x=b$, where $b=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$.
(d) Find the conditions on b_{1}, b_{2}, b_{3} that ensure $A x=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ has a solution.
10.(a) Show that, in general coordinates, the quantities $\frac{\partial v^{i}}{\partial u^{j}}$ do not form the components of a tensor.
(b) Prove that δ_{j}^{i} is a mixed second rank tensor.
(c) A covariant rank-1 tensor has components $x y, 2 y-z^{2}, x z$ in rectangular coordinates. Find its covariant components in spherical coordinates.

DSE-2C

Classical Dynamics

Time Allotted: 2 Hours
Full Marks: 60

GROUP-A

1. Answer any four questions from the following: $3 \times 4=12$
(a) Prove that a possible Lagrangian for a free particle is, 3

$$
L=\dot{q}^{2}-q \dot{q}
$$

(b) What are the Lagrange's equations for a non-conservative system? 3
(c) What do you mean by stable and unstable equilibrium? Give examples. 3
(d) Discuss the importance of invariant interval in special theory of relativity. 3
(e) What are space-like, time-like intervals and light-like intervals? 3
(f) What is the meaning of critical velocity and turbulent motion? 3

GROUP-B

Answer any four questions from the following

2. The Lagrangian of an anharmonic oscillator is, $L(x, \dot{x})=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} \omega^{2} x^{2}-d x^{3}+\beta x \dot{x}^{2}$.
3. Show that the motion of a particle under central force is planar.
4. A particle moving under a central force describes a spiral orbit given by $r=a e^{b \theta}$, where a, b are constants. Obtain the force law.
5. (a) What do you mean by light cone? Explain in 3-dimensional space.
(b) Explain longitudinal Doppler effect using 4-vector perspective.
6. Obtain the normal coordinates of a system of which the Lagrangian is given by
7. Obtain the equation of continuity for a fluid flow.

GROUP-C

Answer any two questions from the following

8. (a) Explain the meaning of conjugation space. 2
(b) Show that symmetry in the Lagrangian leads to different constants of motion. 10
9. Two masses, each equal to m are connected by massless springs of spring constant k, such that they can freely slide on a smooth horizontal surface. The ends of the spring are fixed to vertical walls.

Determine:
(a) the normal frequencies. 4
(b) normal modes of vibration 4
(c) the normal coordinates. 4
10.(a) What do you mean by Minkowski space and define what are world lines? 4
(b) Explain the geometric interpretation of length contraction and time dilation using space time diagrams.
11.(a) A central attractive force varies as r^{m}. The velocity of a particle in a circular orbit of radius r is twice the escape velocity from the same radius. Find m.
(b) Show that ordinary 3 -vector momentum is not conserved under Lorentz transformation whereas the 4 -vector momentum is conserved under the Lorentz transformation.

