

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2022

CC8-MATHEMATICS

MULTIVARIATE CALCULUS

All symbols are of usual significance.

The figures in the margin indicate full marks.

Full Marks: 60

GROUP-A

Answer any four questions from the following

 $3 \times 4 = 12$

1. Let
$$f(x, y) = \begin{cases} \frac{x^3 + y^3}{x - y} & , & x \neq y \\ 0 & , & x = y \end{cases}$$

Show that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist

Time Allotted: 2 Hours

- 2. Find the directional derivative of $f(x, y) = x^2 + y^2$ at (1, 1) in the direction of unit vector $\beta = \left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$.
- 3. If V = f(xyz), prove that $x \frac{\partial V}{\partial x} = y \frac{\partial V}{\partial y} = z \frac{\partial V}{\partial z}$.
- 4. Evaluate $\int_{0}^{1} \int_{x^2}^{x} xy \, dx \, dy$ by changing the order of integration.
- 5. Show that the vector $\vec{V} = (4xy z^3)\hat{i} + 2x^2\hat{j} 3xz^2\hat{k}$ is irrotational.
- 6. By using double integration formula find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

GROUP-B

Answer any four questions from the following

 $6 \times 4 = 24$

- 7. Let $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^2$ and $(a, b) \in D$. Let one of the partial derivatives f_x and f_y exists and the other is continuous at (a, b). Prove that f is differentiable at (a, b).
- 8. If $u = \log r$ and $r^2 = x^2 + y^2 + z^2$, prove that

$$r^{2} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) = 1$$

9. Prove that
$$\int_{0}^{1} dx \int_{0}^{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dy \neq \int_{0}^{1} dy \int_{0}^{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dx.$$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC8/2022

10. State Stoke's theorem. Verify Stoke's theorem for $\vec{A} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k},$

6

where the surface S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

- 11. Evaluate $\iint (1-x-y)^{l-1} x^{m-1} y^{n-1} dx dy$ taken over the interior of the triangle formed by the lines x = 0, y = 0; x + y = 1; where l, m, n being all positive.
- Define a conservative vector field. Prove that a vector field \vec{F} is conservative 1+5=6 over a region, if and only if $\oint \vec{F} \cdot d\vec{r}$ be zero along any closed curve in the region.

GROUP-C

Answer any two questions from the following

 $12 \times 2 = 24$

6

- 13.(a) Show that $\iint \{2a^2 2a(x+y) (x^2 + y^2)\} dx dy = 8\pi a^4$, the region of integration being the circle $x^2 + y^2 + 2a(x+y) = 2a^2$.
 - (b) Let f be a differentiable function of two independent variables u, v and u, v be differentiable functions of one independent variable x. Prove that f is a differentiable function of x and $\frac{df}{dx} = \frac{\partial f}{\partial u} \cdot \frac{du}{dx} + \frac{\partial f}{\partial v} \cdot \frac{dv}{dx}$.
- 14.(a) Let $f(x, y) = \begin{cases} x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

(b) Evaluate $\iint_{R} \frac{\sqrt{a^2b^2 - b^2x^2 - a^2y^2}}{\sqrt{a^2b^2 + b^2x^2 + a^2y^2}} dx dy$ the field of integration being R, the

positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

15.(a) Use Divergence theorem to evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$ where S is the surface enclosing

the cylinder $x^2 + y^2 = 4$, z = 0, z = 3 and $\vec{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$.

(b) Apply Green's theorem in the plane to evaluate

6

$$\oint_C \{ (y - \sin x) \, dx + \cos x \, dy \}$$

where C is the triangle enclosed by the lines y = 0, $x = \pi$, $y = \frac{2x}{\pi}$.

- 16.(a) Prove that the necessary and sufficient condition that the vector field defined by the vector point function \vec{F} with continuous derivatives be conservative is that $\text{curl } \vec{F} = \vec{\nabla} \times \vec{F} = 0$.
 - (b) Use Stoke's theorem to prove that

6

- (i) curl grad $\phi = 0$, where ϕ is a scalar function.
- (ii) div curl $\vec{F} = 0$, where F is a vector field.

____×___

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2022

CC9-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-I

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

	GROUP-A	
	Answer any four questions from the following	$3 \times 4 = 12$
1.	Find a basis and dimension of the subspace W of \mathbb{R}^3 , where $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$.	3
2.	Let R be a finite ring with n elements and S be a subring of R containing m elements. Prove that m is a divisor of n .	3
3.	Consider the ring $\mathbb{Z} \times \mathbb{Z}$ under component-wise addition and multiplication. Show that the set $S = \{(a, 0) : a \in \mathbb{Z}\}$ is a subring of $\mathbb{Z} \times \mathbb{Z}$ having unity different from that of $\mathbb{Z} \times \mathbb{Z}$.	3
4.	Prove that the set $S = \{(1, 0, 1), (0, 1, 1), (1, 1, 0)\}$ is a basis of \mathbb{R}^3 .	3
5.	Let D be an integral domain and $a, b \in D$. If $a^5 = b^5$ and $a^8 = b^8$, then prove that $a = b$.	3
6.	Is the ring $2\mathbb{Z}$ isomorphic to the ring $5\mathbb{Z}$? — Justify.	3

GROUP-B

	Answer any four questions from the following	$6 \times 4 = 24$
7. (a	a) Determine k , so that the set $S = \{(k, 1, 1), (1, k, 1), (1, 1, k)\}$ is linearly independent in \mathbb{R}^3 .	3
	•	
(b	b) If T is linear, then $\ker T = \{\theta\}$ iff T is injective.	3

4075 Turn Over

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/2022

- 8. (a) Let T be a linear mapping on the real vector space P_4 defined by, $T(p(x)) = x \frac{d}{dx}(p(x)), \quad p(x) \in P_4.$ Determine the matrix of T relative to the standard basis of P_4 .
 - (b) Find the dimension of the subspace S of \mathbb{R}^3 defined by, $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y = z, 2x + 3z = y\}$
- 9. Let R and R' be two rings and $\phi: R \to R'$ be an onto homomorphism. If I is an ideal of R, show that $\phi(I)$ is also an ideal of R'. Will this statement still be true if ϕ is any arbitrary homomorphism from R to R'?
- 10. Let U and W be two subspaces of a finite dimensional vector space V. Show that $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$.
- 11. Prove that a finite integral domain is a field.
- 12.(a) Let $R = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\},$ $S = \{2a + 2b\sqrt{3} : a, b \in \mathbb{Z}\}$ and $T = \{4a + 2b\sqrt{3} : a, b \in \mathbb{Z}\}$

3

Show that *T* is an ideal of *S*, but not an ideal of *R*.

(b) Find the units in the integral domain \mathbb{Z} [i].

GROUP-C

Answer any *two* questions from the following $12\times 2 = 24$ 13.(a) Prove that the ring $(\mathbb{Z}_n, +, \cdot)$ is an integral domain iff n is a prime. 4 (b) Find $\dim(U \cap V)$, where U and V are subspaces of \mathbb{R}^4 given by $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\},$ $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_2 - x_3 + x_4 = 0\}$

- (c) Let *R* be a ring with unity and the left ideals of *R* are only the null ideal and *R* itself. Show that *R* is a skew field.
- 14.(a) Extend the set $\{(1, 1, 1, 1), (1, -1, 1, -1)\}$ to a basis of \mathbb{R}^4 .
 - (b) Give an example of a subring which is not an ideal.
 - (c) The matrix of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the ordered bases $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 and $\{(1, 0), (1, 1)\}$ of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find the matrix of T relative to the ordered bases $\{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ of \mathbb{R}^3 and $\{(1, 1), (0, 1)\}$ of \mathbb{R}^2 .

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC9/2022

- 15.(a) Does there exist an epimorphism from the ring \mathbb{Z}_{24} onto the ring \mathbb{Z}_7 ?

 (b) Let I be an ideal of a ring R. Prove that if \mathbb{R} is a commutative ring with unity,
 - (b) Let I be an ideal of a ring R. Prove that if \mathbb{R} is a commutative ring with unity, then so is R/I. If R has no divisor of zero, is the same necessarily true for R/I.

3

- (c) Let α , β , γ be three vectors in a vector space V, so that $\alpha + \beta + \gamma = \theta$. Show that $L(\{\alpha, \beta\}) = L(\{\beta, \gamma\}) = L(\{\gamma, \alpha\})$
- 16.(a) Find a basis and determine the dimension of the set of all 2×2 real skew symmetric matrices.
 - (b) Show that the rings \mathbb{R} and \mathbb{C} are not isomorphic.
 - (c) Let R be the ring of all real valued continuous functions on [0,1]. A mapping $\phi: R \to \mathbb{R}$ is defined by $\phi(f) = f\left(\frac{1}{2}\right) \ \forall f \in R$. Show that ϕ is an onto homomorphism. Determine $\ker \phi$. Prove that $R/\ker \phi \simeq \mathbb{R}$.

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2022

CC10-MATHEMATICS

METRIC SPACES AND COMPLEX THEORY

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer any *four* questions from the following: $3\times 4 = 12$
 - (a) Prove that in any metric space (X, d) every closed sphere is a closed set. 3
 - (b) Show that $f(z) = |z|^2$ is nowhere differentiable except z = 0.
 - (c) Suppose X is a metric space and $\{x_n\}$ is a convergent sequence in X with limit α . Show that the subset $\{x_n : n \in \mathbb{N}\} \cup \{\alpha\}$ of X is compact.
 - (d) Find the value of $\int_C \frac{z^2 4}{z^2 + 4} dz$, where C: |z i| = 2.
 - (e) Prove that the real line \mathbb{R} is not compact.
 - (f) Show that $\int_C (z z_0)^n dz = \begin{cases} 2\pi i & , & \text{if } n = -1 \\ 0 & , & \text{if } n \neq -1 \end{cases}$,

where C is the circle with centre z_0 and radius r > 0 traversed in the anti-clockwise direction.

GROUP-B

2. Answer any *four* questions from the following:

 $6 \times 4 = 24$

Turn Over

- (a) Prove that a compact metric space is complete. Is the converse true? Justify your 4+2=6 answer.
- (b) Prove that the function 6

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} , \quad z \neq 0$$

$$= 0 , \quad z = 0$$

is continuous and that CR equations are satisfied at the origin but f'(0) does not exist.

- (c) (i) Show that if two connected sets are not separated, then their union is 4+2=6 connected.
 - (ii) Show that every totally bounded metric space is bounded.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC10/2022

- (d) (i) Evaluate $\int_C \frac{\cosh(\pi z)}{z(z^2+1)} dz$ using Cauchy's integral formula, where C: |z| = 2. 3+3=6
 - (ii) Expand $\frac{z^2-1}{(z+2)(z+3)}$ in the region |z| > 3.
- (e) (i) Prove that every non-constant polynomial $p(z) = a_0 + a_1 z + \dots + a_n z^n$, has at 4+2=6 least one-zero in \mathbb{C} . Where a_j , $j=0,1,2,\dots,n$ are complex constants and $a_n \neq 0$.
 - (ii) Evaluate $\int_C \frac{e^z}{z^2 2z} dz$, where C: |z| = 4.
- (f) Let (X, d) and (Y, d') be two metric spaces. Show that a function $f: X \to Y$ is continuous iff for any $x \in X$ and for all sequence $\{x_n\}$ converges to x in (X, d), the sequence $\{f(x_n)\}$ converges to f(x) in (Y, d').

GROUP-C

3. Answer any *two* questions from the following:

- $12 \times 2 = 24$
- (a) (i) If f(z) is differentiable in a region G and |f(z)| is constant in G, then 3+6+3=12 show that f(z) is constant in G.
 - (ii) State and prove Cauchy's integral formula for disk.
 - (iii) Prove that every compact metric space is separable.
- (b) (i) If f(z) is an analytic function of z, show that

3+6+3=12

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |\operatorname{Re} f(z)|^2 = 2 |f'(z)|^2$$

- (ii) Prove that every compact metric space is complete and totally bounded.
- (iii) Let A be a subset of a metric space (X,d) and $A \neq \phi$. Define $d(x,A) = \inf\{d(x,a): a \in A\}, x \in X$. Show that the map $f: X \to \mathbb{R}$ defined by f(x) = d(x,A) is uniformly continuous over X.
- (c) (i) Prove that a necessary and sufficient condition that a function 4+4+4=12 f(z)=u(x, y)+iv(x, y) tend to $l=\alpha+i\beta$ as z=x+iy tend to $z_0=a+ib$ is that $\lim_{(x,y)\to(a,b)}u(x, y)=\alpha$ and $\lim_{(x,y)\to(a,b)}v(x, y)=\beta$.
 - (ii) Prove that if an entire function f is bounded for all values of z. Then f is constant.
 - (iii) Let f be an entire function with f(0) = 1, f(1) = 2 and f'(0) = 0. If there exists M > 0 such that $|f''(z)| \le M$ for all $z \in \mathbb{C}$, then find f(z).
- (d) (i) Show that the real line (\mathbb{R}, d) is connected, when d is the usual metric. 6+6=12
 - (ii) Show that a metric space is compact iff every collection of closed sets in X having finite intersection property has non-empty intersection.

~

UNIVERSITY OF NORTH BENGAL

B.Sc. Programme 4th Semester Examination, 2022

DSC1/2/3-P4-MATHEMATICS

D. E. AND VECTOR CALCULUS

Time Allotted: 2 Hours Full Marks: 60

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A / বিভাগ-ক / समूह-क

Answer any four questions যে-কোন *চারটি* প্রশ্নের উত্তর দাও $3 \times 4 = 12$

कुनै <u>चार</u> प्रश्नहरूको उत्तर लेख

1. Show that the solutions of the differential equation y'' - 2y' + 2y = 0 are linearly independent.

দেখাও যে y'' - 2y' + 2y = 0 অবকল সমীকরণটির সমাধানগুলি linearly independent.

विभेदक (Differential) समिकरणमा y'' - 2y' + 2y = 0 को समाधानहरू रेखाीय रूपमा (linearly) स्वतन्त्र छ भनी प्रमाण गर।

2. Find the particular integral of the differential equation $y'' + y = \sin 2x$.

Particular Integral-বের কর $y'' + y = \sin 2x$ -অবকল সমীকরণটির জন্য।

विभेदक समिकरण $y'' + y = \sin 2x$ को विशेष integral निर्णय गर।

Find the Wronskian of the set $\{1, x, x^2, x^3, x^4\}$.

{1, x, x², x³, x⁴}-সেটের Wronskian নির্ণয় কর।

Set $\{1, x, x^2, x^3, x^4\}$ को Wronskian निर्यण गर।

4. Find the order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \sin\left(y\frac{dy}{dx}\right) = 0$.

 $\left(\frac{d^2y}{dx^2}\right)^2 + \sin\left(y\frac{dy}{dx}\right) = 0$ -অবকল সমীকরণটি ক্রম (order) ও ঘাত (degree) নির্ণয় কর।

विभेदक समिकरण $\left(\frac{d^2y}{dx^2}\right)^2 + \sin\left(y\frac{dy}{dx}\right) = 0$ को क्रम अति डिग्री निर्यण गर।

5. If $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are linearly independent, then show that $\vec{\alpha} + \vec{\beta}$, $\vec{\beta} + \vec{\gamma}$, $\vec{\gamma} + \vec{\alpha}$ are also linearly independent.

যদি $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ linearly independent হয়, তাহলে দেখাও $\vec{\alpha}+\vec{\beta}$, $\vec{\beta}+\vec{\gamma}$, $\vec{\gamma}+\vec{\alpha}$ -ও linearly independent হবে।

यदि $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ रेखीय रूपमा स्वतन्त्र छ भने $\vec{\alpha}$ + $\vec{\beta}$, $\vec{\beta}$ + $\vec{\gamma}$, $\vec{\gamma}$ + $\vec{\alpha}$ पनि रेखीय रूपमा स्वतन्त्र छ भनी प्रमाण गर।

6. If $\vec{\nabla} \times \vec{A} = \vec{0}$ and $\vec{\nabla} \times \vec{B} = \vec{0}$, then show that $\vec{\nabla} \cdot (\vec{A} \times \vec{B}) = \vec{0}$.

যদি $\vec{\nabla} \times \vec{A} = \vec{0}$ এবং $\vec{\nabla} \times \vec{B} = \vec{0}$ হয়, তবে দেখাও যে, $\vec{\nabla} \cdot (\vec{A} \times \vec{B}) = \vec{0}$ হবে। যदि $\vec{\nabla} \times \vec{A} = \vec{0}$ अनि $\vec{\nabla} \times \vec{B} = \vec{0}$ भने प्रमाण गर $\vec{\nabla} \cdot (\vec{A} \times \vec{B}) = \vec{0}$ ।

GROUP-B / **বিভাগ-খ** / समृह-ख

Answer any four questions

 $6 \times 4 = 24$

6

যে-কোন চারটি প্রশ্নের উত্তর দাও

कुनै चार प्रश्नहरूको उत्तर लेख

7. Solve the following system of linear differential equation using operator $D = \frac{d}{dx}$.

2

$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0 \quad ; \quad \frac{dy}{dt} + 5x + 3y = 0$$

নিম্নের অবকল সমীকরণের জোড়িটি সমাধান কর, $D\equiv \frac{d}{dx}$ অপারেটরের সাহায্যে।

$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0 \quad ; \qquad \frac{dy}{dt} + 5x + 3y = 0$$

तल दिइएको विभेदक समिकरणको प्रणाली

$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0 \quad ; \qquad \frac{dy}{dt} + 5x + 3y = 0$$

को समाधान निर्णय गर। (अपरेटर $D \equiv \frac{d}{dx}$ प्रयोग गर।)

8. Solve by the method of undetermined coefficients

$$(D^2 + 6D + 9)y = 24e^{-3x}$$
, where $D = \frac{d}{dx}$.

Method of undetermined coefficient-এর সাহায্যে সমাধান করঃ

$$(D^2 + 6D + 9)y = 24e^{-3x}$$
 , মেখানে $D \equiv \frac{d}{dx}$

Undetermined coefficients विधि प्रयोग गरी समाधान गर:

$$(D^2 + 6D + 9)y = 24e^{-3x}$$
 , $D \equiv \frac{d}{dx}$

9. Solve the differential equation by the method of variation of parameters

$$\frac{d^2y}{dx^2} + 4y = 4\sec^2 2x$$

Method of variation of parameter-এর সাহায্যে সমাধান কর: $\frac{d^2y}{dx^2} + 4y = 4\sec^2 2x$

variation of parameters विधि द्धारा विभेदक सिमकरण $\frac{d^2y}{dx^2} + 4y = 4\sec^2 2x$ को समाधान गर।

10. Solve: / সমাধান করঃ / समाधान गर:

$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 2y = \cos(\log x)$$

11.(a) Prove that
$$\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = \vec{0}$$
.

প্রমাণ কর যে, $\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = \vec{0}$.

प्रमाण गर : $\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = \vec{0}$.

(b) Suppose
$$\vec{A} = \hat{j} + 2\hat{k}$$
, $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$. Find $(\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})$.

ধর $\vec{A} = \hat{j} + 2\hat{k}$, $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$, তাহলে $(\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})$ -এর মান নির্ণয় কর।

यदि $\vec{A} = \hat{j} + 2\hat{k}$, $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$ भए, $(\vec{A} + \vec{B}) \times (\vec{A} - \vec{B})$ को मान निर्णय गर।

12. If the position vectors of A, B, C are $2\hat{i} + 4\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \hat{k}$, $3\hat{i} + 6\hat{j} - 3\hat{k}$ respectively, find a vector perpendicular to the plane ABC.

 $A,\ B$ ও C-এর position vector যথাক্রমে $2\hat{i}+4\hat{j}-\hat{k}$, $4\hat{i}+5\hat{j}+\hat{k}$ ও $3\hat{i}+6\hat{j}-3\hat{k}$, তাহলে ABC- তলের লম্ব ভেক্টর নির্ণয় কর।

यदि A,~B,~C भेक्टरहरूको position vector क्रमै स्णंले $2\hat{i}+4\hat{j}-\hat{k}$, $4\hat{i}+5\hat{j}+\hat{k}$, $3\hat{i}+6\hat{j}-3\hat{k}$ भए सम्तल् (plane) ABC मा लम्बवत भेक्टरको निर्णय गर।

GROUP-C / विভाগ-গ / समूह-ग

Answer any *two* questions যে-কোন *দুটি* প্রশ্নের উত্তর দাও

कुनै दुई प्रश्नहरूको उत्तर लेख

13.(a) Solve
$$x^2 \frac{d^2 y}{dx^2} - x(x+2) \frac{dy}{dx} + (x+2)y = x^3$$
, given that $y = x$, $y = xe^x$ are two

linear independent solutions of that corresponding homogeneous equation.

সমাধান করঃ
$$x^2 \frac{d^2 y}{dx^2} - x(x+2) \frac{dy}{dx} + (x+2)y = x^3$$
, দেওয়া আছেঃ $y = x$, $y = xe^x$ দুটি

linear independent সমাধান homogeneous সমীকরণটির।

$$x^2 \frac{d^2 y}{dx^2} - x(x+2) \frac{dy}{dx} + (x+2)y = x^3$$
 को समाधान गर। दिइएको छ, $y = x$, $y = xe^x$ त्यस समिकारणको अनुरूप homogeneous समिकरणको रेखोय रूपमा स्वतन्त्रीत

समाधानहरू हो।

 $12 \times 2 = 24$

6

(b) Find the general solutions of the differential equation.

$$x^{3} \frac{d^{3}y}{dx^{3}} + 2x^{2} \frac{d^{2}y}{dx^{2}} + 2y = 10(x + x^{-1})$$

সাধারণ সমাধান (general solution) নির্ণয় করঃ $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10(x + x^{-1})$

विभेदक समिकारण $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + x^{-1})$ को सामान्य (general) समाधान निर्णय गर।

6

6

6

14.(a) Show that linearly independent solutions of y'' - 2y' + 2y = 0 are $e^x \sin x$ and $e^x \cos x$. What is the general solution? Find the solution y(x) with the conditions y(0) = 2, y'(0) = -3.

দেখাও যে, y''-2y'+2y=0 অবকল সমীকরণের দুটি linearly independent solution যথাক্রমে $e^x \sin x$ ও $e^x \cos x$ । সমীকরণটির সাধারণ সমাধান কি ? y(0)=2 ও y'(0)=-3 শর্তে অবকল সমীকরণের সমাধান y(x) নির্ণয় কর।

y''-2y'+2y=0 को रेखीय रूपमा स्वतन्त्र समाधानहरू $e^x \sin x$ अनि $e^x \cos x$ हो भनी पमाण गर। यसकी सामान्य समाधान के हुन्छ ? यदि y(0)=2, y'(0)=-3 सर्तहरू दिइए y(x) को समाधान निर्णय गर।

(b) Show that if y_1 and y_2 be solutions of the equation $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x alone and $y_2 = y_1 z$, then $z = 1 + ae^{-\int \frac{Q}{y_1} dx}$ (a is an arbitrary constant).

যদি y_1 ও y_2 দুটি সমাধান হয় $\frac{dy}{dx}+Py=Q$ অবকল সমীকরণটির, যেখানে P ও Q শুধু x-এর অপেক্ষক, এবং যদি $y_2=y_1z$ -হয়, তবে প্রমাণ কর যে $z=1+ae^{-\int \frac{Q}{y_1}dx}$ (a-একটি অনির্দিষ্ট ধ্রুবক)।

यदि y_1 अनि y_2 समिकरण $\frac{dy}{dx}+Py=Q$ को समाधान हरू भए, जहाँ P अनि Q x को भए function भए अनि $y_2=y_1z$ भए,

 $z=1+ae^{-\int \frac{Q}{y_1}dx}$ भनी प्रमाण गर। (a एउटा मनमानी स्थिर arbitrary constant हो)

15.(a) Solve by the method of differentiation

$$\frac{dx}{dt} = 7x - y \qquad ; \qquad \frac{dy}{dt} = 2x + 5y$$

Method of differentiation-এর দ্বারা সমাধান কর:

$$\frac{dx}{dt} = 7x - y \qquad ; \qquad \frac{dy}{dt} = 2x + 5y$$

Differentiation विधि ले समाधान गर

$$\frac{dx}{dt} = 7x - y \qquad ; \qquad \qquad \frac{dy}{dt} = 2x + 5y$$

- (b) Show that $\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \cdot \operatorname{curl} \vec{A} \vec{A} \cdot \operatorname{curl} \vec{B}$.
 দেখাও যে, $\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \cdot \operatorname{curl} \vec{A} \vec{A} \cdot \operatorname{curl} \vec{B}$ দাশা গ্ : $\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \cdot \operatorname{curl} \vec{A} \vec{A} \cdot \operatorname{curl} \vec{B}$
- 16.(a) Evaluate: $\lim_{t \to 0} \left[\frac{\sin t}{t} \hat{i} + \frac{1 \cos t}{t} \hat{j} + e^{1 t} \hat{k} \right]$ মান নির্ণয় করঃ $\lim_{t \to 0} \left[\frac{\sin t}{t} \hat{i} + \frac{1 \cos t}{t} \hat{j} + e^{1 t} \hat{k} \right]$ $\lim_{t \to 0} \left[\frac{\sin t}{t} \hat{i} + \frac{1 \cos t}{t} \hat{j} + e^{1 t} \hat{k} \right]$ को मान निर्णय गर।

6

- (b) Find the co-ordinates of the point where the line $\vec{r} = t\hat{i} + (1+2t)\hat{j} 3t\hat{k}$ intersects the plane 3x y z = 2. $\vec{r} = t\hat{i} + (1+2t)\hat{j} 3t\hat{k} -$ রেখাটি 3x y z = 2 তলে যে বিন্দুতে অন্তর্জেদ করে, তার স্থানান্ধ নির্ণয় কর। $\vec{r} = t\hat{i} + (1+2t)\hat{j} 3t\hat{k} \quad \text{लो सम्मल} \quad 3x y z = 2 \quad \text{लाई प्रतिच्छेदम् (intersect)}$ गर्छ भने त्यम विन्दुको co-ordinates निर्णय गर।
- (c) Show that $\vec{a} 3\vec{b} + 5\vec{c}$, $\vec{a} 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} 4\vec{c}$ vectors are coplanar. দেখাও যে $\vec{a} 3\vec{b} + 5\vec{c}$, $\vec{a} 2\vec{b} + 3\vec{c}$ ও $-2\vec{a} + 3\vec{b} 4\vec{c}$ ভেক্টরগুলি সমতলীয়। भेक्टर हरू $\vec{a} - 3\vec{b} + 5\vec{c}$, $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - 4\vec{c}$ coplanar छ भनी प्रमाण गर।

____v__