UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 3rd Semester Examination, 2022

CC5-MATHEMATICS

Theory of real Functions and Introduction to Metric Space

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks

GROUP-A

1. Answer any four questions from the following:
(a) A function $f:[0,1] \rightarrow[0,1]$ is continuous on $[0,1]$. Prove that there exists a point c in $[0,1]$ such that $f(c)=c$.
(b) Show that $\lim _{x \rightarrow 0} \frac{x-|x|}{2}$ does not exist. 3
(c) Prove that if $f(x)$ is continuous at $x=a$ and for every $\delta>0$ there is a point in $|x-a|<\delta$, where $f(x)=0$ then $f(a)=0$.
(d) Verify Rolle's theorem for $f(x)=2 x^{3}+x^{2}-4 x-2$.
(e) Prove that for two subsets A, B of a metric space (X, d) if $A \subseteq B$, then $\delta(A) \leq \delta(B)$.
(f) In a metric space (X, d) if $a, b \in X$ and $a \neq b$, then show that there exists open balls S_{e} and S_{p}, containing a and b respectively such that $S_{a} \cap S_{s}=\varphi$.

GROUP-B

2. Answer any four questions from the following:
(a) If $g(x)=f(x)+f(1-x)$ and $f^{*}(x)<0$ on $[0,1]$, show that $g(x)$ is monotonically increasing on $\left[0, \frac{1}{2}\right]$ and monotonically decreasing on $\left[\frac{1}{2}, 1\right]$.
(b) Show that $\frac{v-u}{1+v^{2}}<\tan ^{-1} v-\tan ^{-1} u<\frac{v-u}{1+u^{2}}$ if $0<u<v$ and deduce that $\quad 4+2$ $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1}\left(\frac{4}{3}\right)<\frac{\pi}{4}+\frac{1}{6}$
(c) Let $\lim _{\rightarrow \rightarrow \infty} \varphi(x)=I$ and f is continuous at l. Prove that

$$
\lim _{x \rightarrow \infty} f(\varphi(x))=f\left(\lim _{x \rightarrow \infty} \varphi(x)\right)=f(f)
$$

(d) State and prove Darboux's theorem.
(e) Let (X, d) be a complete metric space and Y be a subspace of X. Prove that Y is complete if and only if Y is closed.
(f) Let $X=\ell_{p}(1 \leq p<\infty)=$ The set of all p th summable sequences of real or complex numbers and let $d(x, y)=\left\{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{p}\right\}^{1 / p}$ where $x=\left\{x_{n}\right\}$ and $y=\left\{y_{\pi}\right\} \in \ell_{p}$. Prove that ' d ' is a metric on $X=\ell_{p}$.

GROUP-C

3. Answer any two questions from the following:
(a) (i) Find the power series expansion of $\log (1+x)$. Stating clearly its region of validity.
(ii) Let $\left(Y, d^{\prime}\right)$ be a subspace of a metric space (X, d). Prove that a set $A \subset Y$ is open in $\left(Y, d^{\prime}\right)$ if and only if there exists an open set G in (X, d) such that $A=G \cap Y$.
(b) (i) Define separable metric space. Give an example of separable metric space $\quad 1+5$ with justification.
(ii) State and prove Cantor's intersection theorem.
(c) (i) Show that the function f where $f(x)\left\{\begin{array}{cc}x\left[1+\frac{1}{3} \sin \left(\log x^{2}\right)\right], & x \neq 0 \\ 0, & x=0\end{array}\right.$ is continuous everywhere and monotonic but has no differential coefficient at $x=0$.
(ii) Let (X, d) be a metric space and $A \subset X$. Show that $\alpha \in \bar{A}$ if and only if $S \cap A \neq \phi$ for every neighbourtood S of α.
(d) (i) Use mean value theorem of appropriate order to prove that
$x>\sin x>x-\frac{1}{6} x^{3}, 0<x<\pi / 2$.
(ii) Let (X, d) be a metric space. Prove that a non-empty set $A \subset X$ is nowhere dense in X if and only if the set $(\bar{A})^{c}=X \backslash \bar{A}$ is dense in (X, d).

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2022

CC6-MATHEMATICS

Group Theory-I

The figwes in the margin indicate fioll marks

GROUP-A

1. Answer any four questions:
(a) Find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_{5}$.
(b) Let $\beta=\left(\begin{array}{llll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 4\end{array}\right)$, write β^{99} in cycle notation.
(c) Prove that a group G in which $a^{2}=e$ for every element a in G is a commutative group, where e is an identity element of G.
(d) Find all homomorphism from the group $\left(\mathbb{Z}_{6},+\right)$ to $\left(\mathbb{Z}_{4},+\right)$.
(e) Prove that centre of the symmetric group S_{3} is trivial.
(f) Prove that a non-abelian group of order 8 must have an element of order 4 .

GROUP-B

2. Answer any four questions:
$6 \times 4=24$
(a) Prove that the order of every subgroup of a finite group G is a divisor of the order of G
Is the converse true?
(b) fi) Prove that up to isomorphism, there are only two groups of order 4 .4
(ii) Let $\sigma \neq\{e\}$ be a group of order p^{n}, p is prime. Show that G contains an element of order p.
(c) Let H be a subgroup of a group G and $[G: H]=2$. Prove that for every $x \in G$, $x^{2} \in H$.
Deduce that A_{4} has no subgroup of order 6 .
(d) (i) Show that a group G of even order contains an odd number of elements of order 2.
(ii) Let in a group G, a be an element of order 30. Find $o\left(a^{13}\right)$.
(e) In the direct product $\mathbb{Z}_{20} \times \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{6}$, how many elements of order 12 exists?
(f) (i) Let G be a finite commutative group of order n and $\operatorname{gcd}(m, n)=1$. Prove that $\phi: G \rightarrow G$ defined by $\phi(x)=x^{m}, x \in G$ is an isomorphism.
(ii) Prove that the external direct product of two groups A and B is commutative 3 if and only if both groups A and B are commutative.

GROUP-C

$$
12 \times 2=24
$$

3. Answer any two questions:
(a) (i) Let H be a subgroup of a group G. Then prove that $K=\bigcap_{\mathrm{s} \alpha} \mathrm{gHg}^{-1}$ is a normal subgroup of G.
(ii) Let $\alpha=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 4 & 7 & 5 & 2 & 3 & 1\end{array}\right), \quad \beta=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 6 & 7 & 3 & 5 & 2\end{array}\right)$ be the $3+3+2$ elements of S_{7}.
(A) Write α as a product of disjoint cycles.
(B) Write β as a product of 2 -cycles.
(C) Is α^{-1} an even permutation?
(b) (i) Let G and G^{\prime} be two groups and $\phi: \vec{G} \rightarrow G^{\prime}$ be onto homomorphism. If $H=\operatorname{ker} \phi$, then prove that $G / H \simeq G^{\prime}$
(ii) Show that a finite semigroup in which cancellation laws hold is a group.
(c) (i) If N and M are normal subgroups of G, then prove that
(A) $N \cap M$ is also normal in G.
(B) $N M$ is also normal in G.
(ii) Prove that $\mathbb{Z} / 3 \mathbb{Z} \simeq \mathbb{Z}_{3}$.
(iii) Find the order of H if H is a proper subgroup of a group of order 68 and H is non-cyclic.
(d) (i) Prove that the group $S_{n}(n \geq 3)$ is not abelian.
(ii) Show that a group homomorphism $\psi:(G, 0) \rightarrow(H, *)$ is one-one if and only
if $\operatorname{ker} \psi=\{e\}$. Deduce that the homomorphism $\phi:\left(\mathbb{Z}_{s},+\right) \rightarrow\left(\mathbb{Z}_{\sigma},+\right)$ defined by $\phi(\bar{x})=\overline{2 x}$ is not one-one.
\qquad

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2022

CC7-Mathematics

Riemunn Integration and Series of Functions

GROUP-A

1. Answer any four questions:

$$
3 \times 4=12
$$

(a) Consider the function: $f(x)=\left\{\begin{array}{ll}\frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$.

Show that the improper integral $\int_{-1}^{1} f(x) d x$ does not exist whereas its Cauchy principle value exists.
(b) Show that $\Gamma(x)>\frac{1}{e} \int_{0}^{1} x^{x-1} d t=\frac{1}{e^{x}}$ for $x>0$.
(c) Examine the uniform convergence of the series $\sum \frac{(-1)^{n}}{n}|x|^{n}$ in $-1 \leq x \leq 1$. 3
(d) Find the radius of convergence and exact interval of convergence of the power series $\sum \frac{(n+1)}{(n+2)(n+3)} x^{n}$
(c) Express $f(x)=\frac{\pi-x}{2}$ in a Fourier series in $0<x<2 \pi$.
(f) Show that the function

$$
f(x)= \begin{cases}0, & \text { when } x \text { is rational } \\ 1, & \text { when } x \text { is irrational }\end{cases}
$$

is not integrable on any interval.

GROUP-B

$$
\text { Answer any four questions } \quad 6 \times 4=24
$$

2 Iest the convergence of $\int_{1}^{-} \frac{x d x}{1+x^{4} \cos ^{2} x}$.
3. Find the Fourier series for the function $f(x)=\left|\cos \left(\frac{\pi x}{l}\right)\right|$ of period $2 l>0$.
4. (a) Consider the function f defined on $\left[0, \frac{\pi}{2}\right]$ as follows:

$$
f(x)=\left\{\begin{array}{cl}
\cos ^{2} x & \text { if } x \text { is rational } \\
0, & \text { if } x \text { is irrational }
\end{array}\right.
$$

Examine the Riemann integrability of f on $\left[0, \frac{\pi}{2}\right]$.
(b) Give an example of a function which is integrable but has no anti-derivative.
5. Show that the sequence of functions $\left\{f_{x}\right\}$, where $f_{n}(x)=x^{n}$, is, uniformly convergent in $[0, k], k<1$ and pointwise convergent in $[0,1]$.
6. Discuss the convergence of $\int_{0}^{s / 2} \log (\sin x) d x$. Hence find its value, if possible.
7. Let $\sum_{n=1}^{\infty} a_{n} x^{4}$ be a power series with radius of convergence $R(>0)$ and $f(x)$ be the sum of the series on $(-R, R)$, show that $f^{k}(0)=k!a_{n}(k=0,1,2, \cdots)$.

GROUP-C

Answer any two questions

8. (a) Show that $\int_{0}^{\pi / 2} \frac{x^{n}}{\sin ^{n} x} d x$ is convergent iff $n<1+m$.
(b) A sequence of functions $\left\{f_{s}\right\}$ is defined by $f_{1}(x)=\sqrt{x}, f_{n+1}(x)=\sqrt{x f_{n}(x)}$ $\forall n \geq 1$.
Show that $\left\{f_{p}\right\}$ is uniformly convergent on $[0,1]$.
(c) Prove that two different power series cannot converge on the same interval $(-R, R), R>0$ to the same function f.
9. (a) Obtain the Fourier series expansion of $f(x)=x \sin x$ on $[-\pi, \pi]$. Hence deduce that $\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots$,
(b) Assuming $\sin ^{-1} x=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1.3}{2.4} \frac{x^{5}}{5}+\cdots$ for $-1 \leq x \leq 1$, prove that

$$
\int_{0}^{1} \frac{\sin ^{-1} x}{x} d x=1+\frac{1}{2} \cdot \frac{1}{3^{2}}+\frac{1.3}{2.4} \frac{1}{5^{2}}+\cdots
$$

10.(a) State and prove Darboux's Theorem.
(b) If f is bounded and integrable in $[-\pi, \pi]$ and monotonic in $[-\delta, 0)$ and $(0, \delta]$, where $0<\delta<\pi$, then show that $\frac{1}{2} a_{0}+\sum_{m=1}^{\infty} a_{n}=\frac{f\left(0^{-}\right)+f\left(0^{+}\right)}{\pi} \int_{0}^{\infty} \frac{\sin x}{x} d x$ where $a_{n}(n=0,1,2, \cdots)$ denote the Fourier coefficients of f.
11.(a) Test the convergence of $\int_{0}^{-} e^{-x} x^{n-1} d x$.

7
(b) Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n\left(1+x^{n}\right)}$ is uniformly convergent on $[0,1]$.

 UNIVERSITY OF NORTH BENGAL
 B.Sc. Programme 3rd Semester Examination, 2022

DSC1/2/3-P3-MATHEMATICS

Real Analysis

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks.

GROUP-A

বिজाण-क
समूह-क

1. Answer any four questions:

कुनै चार प्रश्नहरूको उत्तर लेख।
(a) Define supremum and infimum of a set and find $\sup A$ and $\inf A$ where

$$
A=\left\{\frac{1}{m}+\frac{1}{n} ; m, n \in \mathbb{N}\right\}
$$

 खिथावन $A=\left\{\frac{1}{m}+\frac{1}{n} ; m, n \in \mathbb{N}\right\}$
supremum अनि infimum को परिभाषा लेख अनि $A=\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$ को $\sup A$ अनि $\inf A$ को मान निकाल।
(b) Show that $\forall x, y \in \mathbb{R}(x<y)$ there exists an irrational number s such that $x<s<y$.
 $x<s<y$.
सवै $x, y \in \mathbb{R}(x<y)$ को लागी त्यहाँ irrational संख्या s अवस्थित छ जो $x<s<y$ छ।
(c) Prove that union of finite number of closed sets in \mathbb{R} is a closed set.
 \mathbb{R}-बর্र ম<ব্য।
\mathbb{R}. मा closed सेटहरूको सिमीत संख्याहरूको union एउटा closed सेट हो भनी प्रमाण गर।
(d) Show that the series

$$
\sum \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots
$$

does not converges.

श्रृंखला $\sum \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots$. अभिकेन्दित हुदैन भनी प्रमाण गर।
(e) Prove that $\lim _{n \rightarrow+\infty}(\sqrt{n+1}-\sqrt{n})=0$.

भ্রমाल कऱा (ख), $\lim _{n \rightarrow+\infty}(\sqrt{n+1}-\sqrt{n})=0$.
$\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$ हुचछ भनी प्रमाण गर।
(f) Determine the nature of the series $\sum_{n=1}^{\infty}(-1)^{n-1}$.

প্রकृতि निर्षान्रণ कत्रো बंই $\sum_{n=1}^{\infty}(-1)^{n-1}$ व्वाथौत्र (series)
श्रृखला $\sum_{\mathrm{n}=1}^{\overline{-}}(-1)^{n-1}$ को प्रकृति निर्णय गर।

GROUP-B
 विडाई-ष
 समूह-ख

2. (a) Usc Cauchy's root test to investigate the nature of the series

$$
\sum_{n=1}^{-} \frac{\left(\frac{a+\sqrt{n}}{n}\right)^{n}}{n^{n+1}}
$$

 श्रृंख्ला (series) $\sum_{n=1}^{\infty} \frac{\left(\frac{(n+\sqrt{n}}{2}\right)^{n}}{n^{n-1}}$ को प्रकृति Cauchy को root test द्वारा निर्णय गर।
(b) Let $\sum u_{n}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots$. Find the partial sum S_{n} of the series $\sum u_{v}$.
 S_{n} बেন্ত করো।

मानौ $\sum u_{n}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots$. श्रृंखला $\sum u_{n}$ को आंशिक योगफल (Partial Sum) निर्णय गर।
3. (a) Prove that every bounded sequence of real number has a convergent subsequence.

प्रत्येक वास्तविक संख्याको सिमाबद्ध अनुक्रम को एउटा अभिकेन्द्रित उप सिमाबद्ध अनुक्रम पाउँछ अनी प्रमाण गर।
(b) Examine the convergence of the sequence

$$
\frac{2}{3},\left(\frac{2}{3}\right)^{2},\left(\frac{2}{3}\right)^{3} \ldots
$$

$$
\frac{2}{3},\left(\frac{2}{3}\right)^{2},\left(\frac{2}{3}\right)^{3} \cdots
$$

अनुक्रम $\frac{2}{3},\left(\frac{2}{3}\right)^{2},\left(\frac{2}{3}\right)^{3} \ldots$ अभिकेन्द्रित हो अनी जाँच गर।
4. Show that if x and y are two numbers of bounded sets of real number S_{1} and S_{2} respectively, then prove that the set S, whose elements are of the form $x+y$ is also bounded and

$$
\sup S_{1}+\sup S_{2}=\sup S
$$

 (bounded) शब এবर

$$
\sup S_{1}+\sup S_{2}=\sup S .
$$

यदि x अनि y क्रमै संगले S_{1} अनि S_{2} वास्तविक संख्याको सिमावद्ध सेटहरूको दुई संख्याहरू भए, सेट S जसको element हरू $x+y$ रूपमा छ, पनि सिमाबद्ध हुन्छ भनि प्रमाण गर अनि

$$
\sup S_{1}+\sup S_{2}=\sup S
$$

5. Prove that $\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots$ converges for $p>1$ and diverges for $p \leq 1$.
 অলभाधी (divergent) ब্রেণी इख।
$\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots p>1$ को लागी converge गई्छ अनि $p \leq 1$ को diverge गई्छ भनी प्रमाण गर।
6. Prove that K be a compact set in \mathbb{R}, every infinite subset of K has a limit point in K. Hence, prove that \mathbb{R} is not compact.
 (limit point) थाकবে K-এর্ন মধ্যে।
সুতনাR, ब্রমাণ করো ভে ' \mathbb{R} ' compact ন্য।
प्रमाण गर \mathbb{R} मा K एउटा compact सेट हो भने प्रत्येक K की उपसेट को एउटा सिमा बिन्दु K मा छ। \mathbb{R} compact होइन भनी पनि प्रमाण गर।
7. (a) Prove that a sequence can have at most one limit.

एउटा अनुक्रमको कस्तीमा पनि एउटा limit छ भननी प्रमाण गर।
(b) State and prove Heine-Borel theorem.

বर्षना এবং প্রমাপ कর়া 'Heine-Borel theorem',
Heine-Borel उपपाध्य को उल्लेख भनि प्रमाण गर।

GROUP-C

विडाण-श
समूह-ग

Answer any two questions

बय-कৈाना मूँि ध्यक्ञात উबबन माब कुनै दुई प्रश्नहरूको उत्तर लेख
8. (a) Show that if a series $\sum x_{n}$ in \mathbb{R} converges then $x_{n} \rightarrow 0$ as $n \rightarrow \infty$,
 यदि एउटा श्रृखला $\sum x_{n}, \mathbb{R}$ मा converge गछ भने $n \rightarrow \infty$ हुँदा $x_{n} \rightarrow 0$ हुन्छ भनी प्रमाण गर।
(b) Test the convergence:

$$
\frac{1}{3}+\frac{1}{3^{3}}+\frac{1}{3^{2}}+\frac{1}{3^{5}}+\ldots
$$

अळ्डिসারীण (convergence) পরীস্গ एरোः

$$
\frac{1}{3}+\frac{1}{3^{3}}+\frac{1}{3^{2}}+\frac{1}{3^{5}}+\ldots
$$

$\frac{1}{3}+\frac{1}{3^{3}}+\frac{1}{3^{2}}+\frac{1}{3^{5}}+\ldots$ को अभिकेन्द्रन को जाँच गर।
(c) Prove that a set is closed in \mathbb{R} iff it contains all its limit points.
 ম<্যে ধারণ কरর্রে।

प्रभाण गर एउटा सेट \mathbb{R} मा closed भए यदि अनि यदि मात्र यसले सबै सिमा बिन्दुहरू आफैंमा समावेश गर्छ।
9. (a) Prove that the set $S \subseteq \mathbb{R}$ is closed iff $S^{\prime} \subset S$.

सेट $S \subseteq \mathbb{R}$ closed हुन्छ यदि अनि यदि मात्र $S^{\prime} \subset S$ हुन्छ भनी प्रमाण गर।
(b) Prove that/ अ্রयाव कर्जে / प्रमाण गर

$$
\lim _{n \rightarrow-}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}\right)=1
$$

(c) Prove that the sequence $\left\{(-1)^{*}\right\}$ is not a Cauchy sequence.

अनुक्रम $\left((-1)^{n}\right)$ Cauchy sequence होइन भनी प्रमाण गर।
10.(a) Find all the limit point of the set

$$
S=\left\{\left.\frac{(-1)^{n}}{m}+\frac{1}{n} \right\rvert\, m, n \in \mathbb{N}\right\}
$$

Is S closed? is S an open set? Justify your answer.

बेट $S=\left\{\left.\frac{(-1)^{n}}{m}+\frac{1}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$ को सबे सिमा बिन्दुहरू खोज। के S closed हो ? के S open set हो। ? आपनो उत्तरको न्यायोघित गर।

UG/CBCS/B.Sc.Programme/3rd Sem/Mathematics/MATHDSC3/2022

(b) Prove that for any $\varepsilon>0$, there exist a natural number η such that $\frac{1}{\eta}<\varepsilon$.

कुनै $\varepsilon>0$ को लागी त्यहाँ एउटा natural संख्या η अवस्थित छ, जस्तै कि $\frac{1}{\eta}<\varepsilon$ हुन्छ भनी प्रमाण गर।
(c) Show that the set of natural number \mathbb{N} is unbounded above.

फलाढ (x, N हैलद मी माहीन unbounded ₹खে।
natural सख्या N को सेट माधि असीमित छ भनी प्रमाण गर।
11. (a) Show that every point in $I=[3,7]$ is a cluster point of the set $S=I \cap Q$.

$l=[3,7]$ मा प्रत्येक बिन्दु सेट $S=I \cap Q$ को cluster बिन्दु हो भनी प्रमाण गर।
(b) Show that the sequence $\left\{S_{n}\right\}$; where $S_{n}=\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}, \forall n \in \mathbb{N}$ is convergent.

एचचाब खে, खनूख्य $\left\{S_{n}\right\}$ घिथानन $S_{n}=\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}, \forall n \in \mathbb{N}$ जि अधिमाओी इखে।
अनुक्रम $\left(S_{n}\right)$ जहौँ $S_{n}=\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!} \forall n \in \mathbb{W}$ convergent हो भनी प्रमाण गर।
(c) Prove that derived set of bounded set is bounded.
 सिमाबद्य सेटको derived तेट, सिमाबद्घ हो भनी प्रमाण गर।

UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 3rd Semester Examination, 2022

SEC1-P1-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60
The figures in the margin indicate fill marks

> The question paper contains SEC1A and SEC1B. Candidates are required to answer any one from the two SEC1 courses and they should mention it clearly
> on the Answer Book.

SEC1A

LOGIC AND SETS

GROUP-A

1. Answer any four questions:

$$
3 \times 4=12
$$

(a) If a is an odd integer. establish that $a^{2}+(a+2)^{2}+(a+4)^{2}+1$ is divisible by 12 .
(b) Describe the method of contradiction to prove an argument.
(c) Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology. 3
(d) Determine all solutions in integer of $24 x+138 y=18$. 3
(e) If $p \geq 5$ is a prime number, show that $p^{2}+2$ is composite. 3
(f) Let $A=\{1,2,3, \cdots, i\}$ for $i=1,2, \cdots$ then find $\bigcup_{i=1}^{-} A$ and $\bigcap_{i=1}^{n} A$,

GROUP-B

2. Answer any four questions:

$$
6 \times 4=24
$$

(ii) State Fermat's theorem. Using induction prove that if p is a prime, then $a^{r}=a(\bmod p)$ for any integer a.
(b) For three sets A, B, C show that $A \cap(B \Delta C)=(A \cap B) A(A \cap C)$.
(c) I ind the number of non-negative integer solutions of the inequality $x_{1}+x_{2}+x_{1}+x_{3}+x_{2}+x_{i}<10$ where $x_{3}>0, i=1,2,-6$
(d) Find the H.C.F and L.C.M of the numbers 12, 20 and 140 using set theory.
(e) Show that each integer divisor $e>1$ of $a^{2}+b^{2}$ is a product of Gaussian prime divisors $q+i r$ of $a^{2}+b^{2}$, unique up to unit factors.
(f) (i) Find the negation of the following statement:

$$
\forall x \exists y[\{p(x, y) \wedge q(x, y)\} \Rightarrow r(x, y)]
$$

(ii) Establish the validity of the argument:

$$
\begin{aligned}
& p \vee q \\
& p \Rightarrow \sim q \\
& p \Rightarrow r \\
& \hline \therefore r
\end{aligned}
$$

GROUP-C

Answer any two questions

3. (a) How many relations are there on a set with n elements? How many of them are reflexive relations?
(b) Define POSET. Show that the relation " \geq " is a partial ordering on \mathbb{Z}.
4. (a) If A and B be two equivalence relations on a set S then prove that $A \cap B$ is an equivalence relation.
(b) Prove that if n is an integer then $n^{2} \geq n$.
5. (a) Explain tautology and contingency. Construct truth tables to determine whether the following statements are tautology or contingency:
(i) $\{p \Rightarrow(q \wedge r)\} \Rightarrow-(p \Rightarrow q)$
(ii) $\sim(p \wedge-q) \Leftrightarrow-p \vee q$.
(b) Prove that $A-\left(\bigcup_{j=1}^{n} B_{i}\right)=\bigcap_{i=1}^{n}\left(A-B_{i}\right)$. Show how this formula is the generalization of the De Morgan's law.
6. (a) State and prove Euler's criterion. 8
(b) Verify that if p is an odd prime, then

$$
\left(-\frac{2}{p}\right)=\left\{\begin{array}{r}
1, \text { if } p=1(\bmod 8) \text { or } p=3(\bmod 8) \\
-1, \text { if } p=5(\bmod 8) \text { or } p=7(\bmod 8)
\end{array}\right.
$$

SECIB
 C++
 GROUP-A

1. Answer any four questions:

$$
3 \times 4=12
$$

(a) What will be the output of the following program? \# include <iostream>

```
void main()
    {
            int a,b,c=50;
            float age;
            a=c;
            b=c+50;
            age =23;
    cout<<"a="<< <<"\}n"
    cout <<"b="<<b<<"\}n"
    cout<<"c="<<c<<"\n";
    cout <<"age =" <<age;
    }
```

(b) What is an inline function? Is it possible to ignore inlining?
(c) Write a $\mathrm{C}++$ program to find the maximum of two input numbers.
(d) What are the most important differences between C and $\mathrm{C}++$?
(e) Write a $\mathrm{C}++$ program to find the absolute value of an integer.
(f) What is friend function? Describe its importance.

GROUP-B

Answer any four questions

2. Suppose there are two 'txt' files named filel.txt and file2.txt. Write a C++ program that reads the data filel.txt and copy every alternative character to file2.txt.
3. Write a $\mathrm{C}+$ program to alternate rows and columns of a 4×4 matrix.

Which beader file requires to calculate the length of a string? Write a $\mathrm{C}++$ program to calculate the length of a string.
5. Write a C++ program that will give the following output:

1	2	3	4	5
1	2	3	4	
1	2	3		
1	2			
1				

6．What is inheritance？What are base and derived classes？Give a suitable example $\quad 2+2+2$
for inheritance．

7．What is demonstrated by the following program？
\＃include＜iostream＞
using namespace std； int main（）
\｛ int exponent；
float base，result $=1$ ；
cout «＂Enter base and exponent：＂；
cin 》 base 》 exponent；
cout 《＜base＜＜＂＾＂《＜exponent S＂＝＂；
while（exponent $!=0$ ）
f
result $*=$ base；
－－exponent；
\}
cout＜＜result；
return 0 ；
\}

GROUP－C

Answer any two questions

$$
12 \times 2=24
$$

8．（a）Write a C＋＋program to detect and handle divide by zero errors． 7
（b）Write a $\mathrm{C}++$ program to find the sum of first 15 even numbers and their squares 5 sum．
9．（a）Write a $\mathrm{C}++$ program to find the factorial of a positive integer． 4
（b）Write a C＋＋program for sorting names in alphabetical order． 8
10．（a）What are copy constructor？Explain their need． 4
（b）Write a program in $\mathrm{C}++$ to illustrates the concept of overriding default operations 8
performed by a user defined copy constructor．
I1．（a）What is class？Describe the syntax for declaring a class with example． 5
（b）Write a program in $\mathrm{C}++$ to declare a class employee，consisting of data members 7＂employee no＂and＂employee name＂．Write the member functions＂accept（）＂toaccept and＂display（ $)$＂to display the data for five employees．

