UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC1/2022

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2022

CC1-MATHEMATICS

CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION

Time Allotted: 2 Hours

Full Marks: 60

 $3 \times 4 = 12$

The figures in the margin indicate full marks

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Find $\int \sin^4 x \cos^2 x \, dx$.
 - (b) Find the points of inflexion, if any, of the curve $x = (\log y)^{\frac{1}{2}}$
 - (c) Obtain reduction formula for $\int \tan^n x \, dx$, *n* being a positive integer, greater than 1.
 - (d) Obtain the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$; 2x + 3y + 4z = 8 is a great circle.
 - (e) Find the solution of the differential equation $(x^2 + y^2 + 2x) dx + 2y dy = 0$.
 - (f) Find the differential equation of all circles, which pass through the origin and whose centres are on the x-axis.

GROUP-B

2.	Answer any four questions from the following:	6×4 = 24
	 (a) (i) State Leibnitz's theorem on successive derivatives. 	2
	(ii) If $y = (\sin^{-4} x)^2$, prove that	4
	$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0.$	
	(b) Find the volume of the solid generates by revolving the cardioid $r = a(1 - \cos \theta)$, about the initial line.	- 6
2	(c) If 'g' is a variable tangent of the conic $\frac{l}{r} = 1 - e \cos \theta$, show that the locus of the	6
	foot of the perpendicular from the pole on 'g' is the circle $r^2(e^2-1)+2elr\cos\theta+l^2=0$.	
	(d) (i) Show that $\frac{1}{x^2}$ is an integrating factor of $xdy - ydx = 0$.	3
	(ii) Solve the differential equation	3

$$(xy^2 - e^{1/x^2})dx - x^2y \, dy = 0$$

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC1/2022

(e) If
$$I_n = \int_0^\infty \cos^{n-2} x \sin nx \, dx$$
, show that $2(n-1)I_n = 1 + (n-2)I_{n-1}$ and hence deduce that $I_n = \frac{1}{n-1}$.

(f) Solve the differential equation

412

(i)
$$(x + y \cos \frac{y}{x}) dx = x \cos \frac{y}{x} dy$$

(ii) $\frac{dy}{dx} = \sin(x + y)$

GROUP-C

Answer any *two* questions from the following:

(a) (i) Find the rectilinear asymptotes of the curve

$$x^{3} + x^{2}y - xy^{2} - y^{1} + x^{2} - y^{2} = 2.$$

(ii) If $I_n = \int_0^1 x^n \tan^{-1} x \, dx$, then show that

$$(n+1)I_n + (n-1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$$

(b) (i) Find the values of α , β such that

$$\lim_{x\to 0}\frac{\alpha\sin 2x - \beta\sin x}{x^3} =$$

- (ii) Find $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/2}$
- (iii) If $y = \sin ax$, a is constant, then show that

$$\frac{d^n y}{dx^n} = a^n \sin\left(ax + \frac{n\pi}{2}\right), \ n \in \mathbb{N}.$$

- (c) (i) Find the surface area of the solid generated by revolving the cycloid 6+6 $x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$ about its base.
 - (ii) Solve the differential equation

$$\frac{dy}{dx} + \frac{1}{(1+x^2)}y = \frac{e^{\tan^{-1}x}}{1+x^2}$$

(d) Solve the differential equation

(i)
$$x^{3} \frac{dy}{dx} = y^{3} + y^{2} \sqrt{(y^{2} - x^{2})}$$

(ii) $x \cos x \frac{dy}{dx} + y(x \sin x + \cos x) = 1$

1057

2

4+4+4

6+6

3+3

6+6

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC2/2022

UNIVERSITY OF NORTH BENGAL

B Sc. Honours 1st Semester Examination, 2022

CC2-MATHEMATICS

ALGEBRA

Time Allotted: 2 Hours

1.

The figures in the margin indicate full marks

GROUP-A

	Answer any four questions:	3×4 = 12
(a)	If $T: \mathbb{R}^3 \to \mathbb{R}$ and $T(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ then show that T is not a Linear Transformation.	3
(b)	If a, b, x are real and $mod(a+ib) = 1$, prove that $(a+ib)^{\prime\prime\prime}$ is purely real.	3
(c)	전에 이렇게 알려져 있다. 여러 이렇게 이렇게 이렇게 이렇게 이렇게 있다. 이렇게 이렇게 있는 것은 이렇게 이야지 않는 것이 있는 것이 있다. 이렇게 있는 것이 있는 것이 있는 것이 있다. 이렇게 이 가 있는 것이 있다. 이렇게 있는 것이 있는 것이 있다. 이렇게 있는 것이 있는 것이 있다. 이렇게 있는 것이 있는 것이 있는 것이 있다. 이렇게 있는 것이 있는 것이 있는 것이 있다. 이렇게 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이렇게 있는 것이 있다. 이렇게 있는 것이 없다. 이렇게 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없다. 이렇게 있는 것이 있는 것이 있는 것이 없다. 이렇게 있는 것이 있는 것이 있는 것이 있는 것이 없다. 이렇게 있는 것이 있는 것이 있는 것이 없다. 이렇게 있는 것이 없다. 것이 있는 것이 없다. 이렇게 있는 것이 없다. 이렇게 있는 것이 없다. 이렇게 있는 것이 있는 것이 없다. 것이 있는 것이 없다. 것이 있는 것이 있는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 있는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 있	3
(d)		3
		3
(f)	Determine the rank of the matrix	3
	2 4 8 6 3 6 6 3 GROUP-B	
	Answer any four questions:	6×4 = 24
(a)	Obtain the fully reduced normal form of the matrix	6
	1 3 1 0 3	
0	26428	
	3 9 4 2 10)	
	(b) (c) (d) (e) (f)	 (a) If T: R³ → R and T(x₁, x₂, x₃) = x₁² + x₂² + x₃² then show that T is not a Linear Transformation. (b) If a, b, x are real and mod(a+ib) = 1, prove that (a+ib)^{ax} is purely real. (c) A relation ρ on Z is defined by ρ = {(a, b) ∈ Z × Z : a - b is divisible by 7}. Show that ρ is an equivalence relation. (d) If x³ + 3px + q has a factor of the form (x - α)². then show that q² + 3p³ = 0. (e) Prove that n(n+1)² > 4(n!)^{3/n} where n be a positive integer greater than I. (f) Determine the rank of the matrix (a) Obtain the fully reduced normal form of the matrix (b) If x = 1 (0) (0 - 1 (2 - 1)) (1 - 3 (1 - 2)) (1 - 3 (1 - 2)) (2 - 4 - 3 (2 - 2)) (2 - 4 - 2 - 3)).

(b) If $\log \sin(x + iy) = u + iv$ ($0 < x < \pi$), prove that

(i)
$$u = \frac{1}{2} \log (\cosh^2 y - \cos^2 x)$$

(ii)
$$v = \tan^{-1} (\cot x \tanh y)$$

(c) If α be a non-real root of $x^2 = 1$, find the equation whose roots are $(\alpha + \alpha^6), (\alpha^2 + \alpha^5), (\alpha^4 + \alpha^4).$

1058

2.

Turn Over

Full Marks: 60

6

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHCC2/2022

(d) Find the eigenvalues and the corresponding eigenvectors of the following real matrix.

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 1 \\ 3 & 5 & 6 \end{pmatrix}$$

(e) If a, b, c, d are positive and not all equal then prove that

$$\frac{3}{b+c+d} + \frac{3}{c+d+a} + \frac{3}{d+a+b} + \frac{3}{a+b+c} > \frac{16}{a+b+c+d}.$$

(f) (i) Find the least positive residues in 3³⁶ (mod 77).

(ii) If a mapping $f: A \to \mathbb{R}$, where $A = \{x \mid 0 < x < 1\}$ is defined by $f(x) = \frac{2x-1}{1-|2x-1|}$, $x \in A$ then show that f is bijective.

GROUP-C

- 3. Answer any two questions:
 - (a) (i) State and prove Division algorithm.
 - (ii) The matrix of a Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the ordered (1 2

basis {(-1, 1, 1), (1, -1, 1), (1, 1, -1)} of
$$\mathbb{R}^3$$
 is $\begin{bmatrix} 2 & 1 & 3 \\ 3 & 3 & 6 \end{bmatrix}$. Find $T(x, y, z)$,

where $(x, y, z) \in \mathbb{R}^3$. Is T invertible?

Solve the biquadratic equation by Ferrari's method: (b) (i) 6 $r^{4} + 2r^{3} - 7r^{2} - 8r + 12 = 0$

$$x + 2x - 7x - 6x + 12 = 0.$$

ŝ

(ii) Prove that the product of any m consecutive integers is divisible by m. 3 (iii) Find all values of (-i)^{3/4}.

(c) (i) If the roots α , β , γ of the equation $x^3 + qx + r = 0$ are in A.P., show that the 4

rank of the matrix $\begin{pmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ & & & \alpha \end{pmatrix}$ is 2.

(ii) If $\alpha_1, \alpha_2, \dots, \alpha_n$ are *n* distinct roots of the equation $x^n - 1 = 0$, then prove that 5 $(a+b\alpha_1)(a+b\alpha_2)\cdots(a+b\alpha_n)=a^n+(-1)^{n-1}b^n.$

(iii) Prove that $3.4^{n+1} \equiv 3 \pmod{9}$ for all positive integer n.

Determine the conditions for which of the following system of linear equations (d) (i) 6 x + 2y + z = 1

$$2x + y + 3z = b$$
$$x + ay + 3z = b + 1$$

has (A) Unique solution, (B) No solution and (C) many solutions.

(ii) Find the inverse of the given matrix A by using Cayley Hamilton theorem:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}$$

1058

6

 $12 \times 2 = 24$

6

6

3

3

UG/CBCS/B.Sc./Programme/1st Sem./Mathematics/MATHDSC1/2022

UNIVERSITY OF NORTH BENGAL

B.Sc. Programme 1st Semester Examination, 2022

DSC1/2/3-P1-MATHEMATICS

CALCULUS AND GEOMETRY

Time Allotted: 2 Hours

Full Marks: 60

 $3 \times 4 = 12$

The figures in the margin indicate full marks

GROUP-A / विडांश-क / समूह-क

- Answer any *four* questions of the following: নিম্বলিখিত যে-কোন চারটি প্রাপ্তের উত্তর দাও: কুন <u>चार</u> प्रश्नहरूको उत्तर लेख –
 - (a) Evaluate $\lim_{x \to 0} \frac{1}{x} (\sqrt{1+x} \sqrt{1-x})$ With each of a set in the set of th
 - (b) If $u = \sin \alpha x + \cos \alpha x$. Show that $u_n = \alpha^n \{1 + (-1)^n \sin 2\alpha x\}^{1/2}$. यणि $u = \sin \alpha x + \cos \alpha x$ इस, ভাহলে দেখাও যে, $u_n = \alpha^n \{1 + (-1)^n \sin 2\alpha x\}^{1/2}$ । यदि $u = \sin \alpha x + \cos \alpha x$ भए, देखाऊ $u_n = \alpha^n \{1 + (-1)^n \sin 2\alpha x\}^{1/2}$ ।
 - (c) Find the area of the curve, $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$.
 - $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$ এই বক্ররেখা দ্বারা সীমাবদ্ধ ক্ষেত্রের ক্ষেত্রফল নির্ণয় কর।
 - वक्र $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$ को क्षेत्रफल निकाल।
 - (d) If $I_n = \int_{0}^{n/2} \sin^n x \, dx$, where 'n' is a positive integer, prove that $I_n = \frac{n-1}{n} I_{n-2}$, for
 - যদি $I_n = \int_0^{x/2} \sin^x x \, dx$ হয় যেখানে ' n ' হল একটি ধনাত্মক পূৰ্ণসংখ্যা, তাহলে প্ৰমাণ কর
 - $I_n = \frac{n-1}{n} I_{n-2}$ (यथारन n > 2) एउटा धनात्मक पूर्णांक 'n' को लागी यदि $I_n = \int_{0}^{n/2} \sin^n x \, dx$ भए, n > 2 को लागी

ı

 $I_n = \frac{n-1}{n} I_{n-2}$ हुन्छ भनी देखाऊ।

Turn Over

UG/CBCS/B.Sc./Programme/1st Sem./Mathematics/MATHDSC1/2022 (e) Find the angle of rotation of the axes for which the equation $x^2 - y^2 = a^2$ will অক্ষের ঘূর্ণন কোণের মান বের কর যার জন্য $x^2 - y^2 = a^2$ সমীকরণটি $xy = c^2$ সমীকরণে समीकरण $x^2 - y^2 = a^2$, $xy = c^2$ मा परिणत हुदा, अक्षहरू घुमेको कोण निर्णय गर। c² को मान पनि निर्णय गर। (f) If $y = e^{max^{-1}x}$, show that $(1 - x^2)y_2 - xy_1 - m^2y = 0$. ষদি $y=e^{max^{-1}x}$ হয়, তাহলে দেখাও যে $(1-x^2)y_2-xy_1-m^2y=0$ । यदि $y = e^{mun^{-1}x}$ भए, प्रमाण गर $(1 - x^2)y_2 - xy_1 - m^2y = 0$. GROUP-B / विङाश-थ / सम्ह-ख $6 \times 4 = 24$ Answer any four questions from the following: 2. নিশ্বলিখিত যে-কোন *চারটি প্রশ্নের উত্তর* দাওঃ कुनै <u>चार</u> प्रश्नहरूको उत्तर लेख – (a) Find a, b in order that $\lim_{x \to 0} \frac{a \sin 2x - b \sin x}{x^3} = 1$ যদি $\lim_{x\to 0} \frac{a\sin 2x - b\sin x}{x^3} = 1$ হয়, তাহলে a এবং b-এর মান নির্ণয় কর। $\lim_{x \to 0} \frac{a \sin 2x - b \sin x}{x^3} = 1$ भए. a, b को मान निर्णय गर। (b) If $y^{1/m} + y^{-1/m} = 2x$, prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$. যদি y^{ilm} + y^{-ilm} = 2x হয়, তাহলে প্রমাণ কর যে $(x^{2}-1)y_{n+2} + (2n+1)xy_{n+1} + (n^{2}-m^{2})y_{n} = 0$ यदि $y^{\forall m} + y^{-\forall m} = 2x$ भए, $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ हुन्छ भनी प्रमाण गर। (c) If $I_n = \int x^n \tan^{-1} x \, dx$, (n > 2), then prove that $(n+1)I_n + (n-1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$. যদি $I_n = \int_{-\infty}^{1} x^n \tan^{-1} x \, dx, (n > 2)$ হয়, তাহলে প্রমাণ কর যে $(n+1)I_n + (n-1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$. यदि $I_n = \int_0^1 x^n \tan^{-1} x \, dx, (n > 2)$ भए, प्रमाण गर $(n+1)I_n + (n-1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$ (d) Find the asymptotes of the curve $x^3 - 6x^2y + 11xy^2 - 6y^3 + x + y + 1 = 0$. $x^{3} - 6x^{2}y + 11xy^{2} - 6y^{3} + x + y + 1 = 0$ এই ব্যুবোখার Asymptotes বের কর। यक्त $x^3 - 6x^2y + 11xy^2 - 6y^3 + x + y + 1 = 0$ को एसिम्प्टोट् निर्णय गर।

UG/CBCS/B.Sc./Programme/1st Sem./Mathematics/MATHDSC1/2022

(e) Show that the spheres $x^2 + y^2 + z^2 - 2x - 4y - 4z = 0$ and $x^2 + y^2 + z^2 + 10x + 2z + 10 = 0$ touch each other externally. Find the point of contact. (नयाध य $x^2 + y^2 + z^2 - 2x - 4y - 4z = 0$ खवर $x^2 + y^2 + z^2 + 10x + 2z + 10 = 0$ खंदे (आजक्य विश्व विद्या क्रिक व्यक्त कडाइ) छेक (आजक्य खात व्यक्त किन्धु कि निर्ध कत) अण्डाकर वृत्तहरू $x^2 + y^2 + z^2 - 2x - 4y - 4z = 0$ अनि $x^2 + y^2 + z^2 + 10x + 2z + 10 = 0$ एकाकी लाई हुन्छ भनी प्रमाण गर।

(f) Trace the curve : (x + 3)(x² + y²) = 4. (x + 3)(x² + y²) = 4 এই বক্ররেখাটি অন্তন (Trace) কর। বক্র (x + 3)(x² + y²) = 4 কो चित्र बनाऊ।

GROUP-C / विडांग-ग / समूह-ग

 $12 \times 2 = 24$

 Answer any two questions from the following: যে-কোন দুটি প্রশ্নের উত্তর দাওঃ কুনী বুईবटা प्रश्नहरूको उत्तर लेख –

(a) (i) Find a reduction formula for
$$\int \sin^m x \cos^n x \, dx$$
, where $m, n \in \mathbb{N}$. Hence find $6+2$
a reduction formula for $\int_{0}^{\pi/2} \sin^m x \cos^n x \, dx$.

 $\int \sin^m x \cos^n x \, dx$ -এর দ্রাস সূত্র (reduction formula) বের কর যেথানে $m, n \in \mathbb{N}$. অতঃপর $\int \sin^m x \cos^n x \, dx$ -এর হ্রাস সূত্র (reduction formula) বের কর।

 $\int \sin^m x \cos^n x \, dx$, $m, n \in \mathbb{N}$ को लागी reduction सूत्र निर्णय गर। त्यस पछि $\int \sin^m x \cos^n x \, dx$ को reduction सूत्र निर्णय गर।

(ii) If
$$y = 2\cos x(\sin x - \cos x)$$
, then find $\frac{d^{10}y}{dx^{10}}$ at $x = 0$.

यपि
$$y = 2\cos x(\sin x - \cos x)$$
 इस, তाহলে $x = 0$ विन्नू $\frac{d^{10}y}{dx^{10}}$ - अब मान निर्णय कत
यदि $y = 2\cos x(\sin x - \cos x)$ भए, $x = 0$ मा $\frac{d^{10}y}{dx^{10}}$ को मान निर्णय गर।

Find the nature of the conic
$$r = \frac{2}{4 + \cos\theta}$$
 and also find the equation of

6

4

t

directiries.

$$r = \frac{2}{4 + \cos\theta}$$
 এই conic-এর nature নির্ণয় কর এবং নিয়ামকের (directrix) সমীকরণ
নির্ণয় কর।
কালিক $r = \frac{2}{4 + \cos\theta}$ ক্রা प्रकृति নির্णय पर अनि directiries ক্রা मान पनि নির্णय

गर।

UG/CBCS/B.Sc./Programme/1st Sem./Mathematics/MATHDSC1/2022

(ii) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle. (शानतकत अभीकत्रल मिर्मग्न कन राषात्म $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 এই व्राप्ति ध्रकांक great वृत्त। वृत्त $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 एउटा वृहत्त यृत्त भए भने अण्डा वृत्तको समीकरण निर्णय गर। 6

6

6

- (c) (i) Discuss the nature of the conic 4x² 4xy + y² + 2x 26y + 9 = 0 and reduce it to its canonical form. 4x² - 4xy + y² + 2x - 26y + 9 = 0 এই conic-টির nature সম্পর্কে আলোচনা কর এবং এটির canonical form তে reduce করে দেখাও। कोनिक 4x² - 4xy + y² + 2x - 26y + 9 = 0 কो प्रकृति छलफल गर्द यसलाई canonical रूपमा परिणत गर।
 - (ii) Find the volume of the solid obtained by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about its base. $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ এই Cycloid-টি উহার পাদদেশের সাপেক্ষে আবর্তের ফলে যে ঘনবস্তুটি পাওয়া যাবে তার আয়তন নির্ণয় হব। आधारको अज्ञानमा एउटा साइक्लोइन्ड $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ लाई धुमाउँदा पाएको ठोस को मात्रा (volume) निर्णय गर।

(d) (i) Prove that the curves $\frac{x^2}{a} + \frac{y^2}{b} = 1$, $\frac{x^2}{a'} + \frac{y^2}{b'} = 1$ cut orthogonally if 6 a - b = a' - b'. a = b = a' - b'. a = a' - b'. a = b = a' - b' Reference in the curves $\frac{x^2}{a} + \frac{y^2}{b'} = 1$ substantiates orthogonally (as a state of the state

यदि $y = x^{2n}$ $(n \in \mathbb{N})$ भए, प्रमाण गर, $y_n = 2^n [1 \cdot 3 \cdot 5 \cdots (2n-1)] x^n$