UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2022

CC1-Mathematics

Calculus, Geometry and Differential Equation

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks

GROUP-A

1. Answer any four questions from the following:
(a) Find $\int \sin ^{4} x \cos ^{2} x d x$.
(b) Find the points of inflexion, if any, of the curve $x=(\log y)^{3}$
(c) Obtain reduction formula for $\int \tan ^{n} x d x, n$ being a positive integer, greater than 1.
(d) Obtain the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0 ; 2 x+3 y+4 z=8$ is a great circle.
(e) Find the solution of the differential equation $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.
(f) Find the differential equation of all circles, which pass through the origin and whose centres are on the x-axis,

GROUP-B

2. Answer any four questions from the following:
(a) (i) State Leibnitz's theorem on successive derivatives.

2
(ii) If $y=\left(\sin ^{-1} x\right)^{2}$, prove that 4

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0 .
$$

(b) Find the volume of the solid generates by revolving the cardioid $r=a(1-\cos \theta)$, about the initial line.
(c) If ' g ' is a variable tangent of the conic $\frac{l}{r}=1-e \cos \theta$, show that the locus of the foot of the perpendicular from the pole on ' g ' is the circle $r^{2}\left(e^{2}-1\right)+2 e l r \cos \theta+l^{2}=0$.
(d) (i) Show that $\frac{1}{x^{2}}$ is an integrating factor of $x d y-y d x=0$.
(ii) Solve the differential equation

$$
\left(x y^{2}-e^{l\left(x^{3}\right)}\right) d x-x^{2} y d y=0
$$

(e) If $I_{n}=\int_{0}^{n / 2} \cos ^{n-2} x \sin n x d x$, show that $2(n-1) I_{n}=1+(n-2) I_{n}$, and hence deduce that $l_{n}=\frac{1}{n-1}$
(1) Solve the differential equation
(i) $\left(x+y \cos \frac{y}{x}\right) d x=x \cos \frac{y}{x} d y$
(ii) $\frac{d y}{d x}=\sin (x+y)$

GROUP-C

3. Answer any two questions from the following:
(a) (i) Find the rectilinear asymptotes of the curve

$$
x^{3}+x^{2} y-x y^{2}-y^{3}+x^{2}-y^{2}=2 .
$$

(ii) If $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x$, then show that

$$
(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}
$$

(b) (i) Find the values of α, β such that

$$
\lim _{x \rightarrow 0} \frac{\alpha \sin 2 x-\beta \sin x}{x^{3}}=1
$$

(ii) Find $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$
(iii) If $y=\sin a x, a$ is constant, then show that

$$
\frac{d^{n} y}{d x^{n}}=a^{n} \sin \left(a x+\frac{n \pi}{2}\right), n \in \mathbb{N} .
$$

(c) (i) Find the surface arca of the solid generated by revolving the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ about its base.
(ii) Solve the differential equation

$$
\frac{d y}{d x}+\frac{1}{\left(1+x^{2}\right)} y=\frac{e^{10 x^{-1} x}}{1+x^{2}}
$$

(d) Solve the differential equation
(i) $(x) \frac{d y}{d x}=y^{2}+y^{2} \sqrt{\left(y^{2}-x^{2}\right)}$
(ii) $x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1$

UNIVERSITY OF NORTH BENGAL
B Sc. Honours Ist Semester Examination. 2022

CC2-Mathematics

Algebra

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margion indicute fwll marks

GROUP-A

1. Answer any four questions:

$$
3 \times 4=12
$$

(a) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $T\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ then show that T is not a Linear 3 Transformation.
(b) If a, b, x are real and $\bmod (a+i b)=1$, prove that $(a+i b)^{i x}$ is purely real.3
(c) A relation ρ on \mathbb{Z} is defined by $\rho=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}$: $a-b$ is divisible by 7$\}$. Show 3 that ρ is an equivalence relation.
(d) If $x^{3}+3 p x+q$ has a factor of the form $(x-\alpha)^{2}$. then show that $q^{2}+3 p^{3}=0$.
(c) Prove that $n(n+1)^{2}>4(n!)^{3 / n}$ where n be a positive integer greater than 1 . 3
(f) Determine the rank of the matrix

$$
\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 4 & 8 & 6 \\
3 & 6 & 6 & 3
\end{array}\right)
$$

GROUP-B

2. Answer any four questions:
(a) Obtain the fully reduced normal form of the matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 2 & 1 \\
1 & 3 & 1 & 0 & 3 \\
2 & 6 & 4 & 2 & 8 \\
3 & 9 & 4 & 2 & 10
\end{array}\right)
$$

(b) If $\log \sin (x+i y)=u+i v(0<x<\pi)$, prove that
(i) $u=\frac{1}{2} \log \left(\cosh ^{2} y-\cos ^{2} x\right)$
(ii) $v=\tan ^{-1}(\cot x \tanh y)$
(c) If α be a non-real root of $x=1$, find the equation whose roots are

$$
\left(\alpha+\alpha^{6}\right) \cdot\left(\alpha^{2}+\alpha^{5}\right) \cdot\left(\alpha^{1}+\alpha^{4}\right)
$$

(d) Find the eigenvalues and the corresponding eigenvectors of the following real matrix

$$
\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & -2 & 1 \\
3 & 5 & 6
\end{array}\right)
$$

(e) If a, b, c, d are positive and not all equal then prove that

$$
\frac{3}{b+c+d}+\frac{3}{c+d+a}+\frac{3}{d+a+b}+\frac{3}{a+b+c}>\frac{16}{a+b+c+d}
$$

(f) (i) Find the least positive residues in $3^{36}(\bmod 77)$.
(ii) If a mapping $f: A \rightarrow \mathrm{R}$, where $A=\{x \mid 0<x<1\}$ is defined by $f(x)=\frac{2 x-1}{1-|2 x-1|}, x \in A$ then show that f is bijective.

GROUP-C

3. Answer any two questions:
(a) (i) State and prove Division algorithm.
(ii) The matrix of a Linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ relative to the ordered
basis $\{(-1,1,1),(1,-1,1),(1,1,-1)\}$ of \mathbb{R}^{3} is $\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 6\end{array}\right)$. Find $T(x, y, z)$, where $(x, y, z) \in \mathbb{R}^{3}$. Is T invertible?
(b) (i) Solve the biquadratic equation by Ferrari's method:

$$
x^{4}+2 x^{3}-7 x^{2}-8 x+12=0
$$

(ii) Prove that the product of any m consecutive integers is divisible by m.
(iii) Find all values of $(-i)^{1 / 4}$. 3
(c) (i) If the roots α, β, γ of the equation $x^{3}+q x+r=0$ are in A.P., show that the 4 rank of the matrix $\left(\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right)$ is 2 .
(ii) If $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are n distinct roots of the equation $x^{n}-1=0$, then prove that $\left(a+b \alpha_{1}\right)\left(a+b \alpha_{2}\right) \cdots \cdot\left(a+b \alpha_{a}\right)=a^{n}+(-1)^{n-1} b^{n}$.
(iii) Prove that $3.4^{n+1} \equiv 3(\bmod 9)$ for all positive integer n. 3
(d) (i) Determine the conditions for which of the following system of linear equations

$$
\begin{aligned}
& x+2 y+z=1 \\
& 2 x+y+3 z=b \\
& x+a y+3 z=b+1
\end{aligned}
$$

has (A) Unique solution, (B) No solution and (C) many solutions.
(ii) Find the inverse of the given matrix A by using Caylcy Hamilton theorem:

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 1 \\
2 & 3 & -1
\end{array}\right)
$$

UNIVERSITY OF NORTH BENGAL

B.Sc. Programme Ist Semester Examination, 2022

DSC1/2/3-P1-MATHEMATICS

Calculus and Geometry

Time Allotted: 2 Hours
Full Marks: 60
The figures in the margin indicate full marks

GROUP-A / रिङाध-क/समूह-क

1. Answer any four questions of the following:

$$
3 \times 4=12
$$

कुनै चार प्रश्नहरूको उत्तर लेख -
(a) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}(\sqrt{1+x}-\sqrt{1-x})$

घान बে木 কबः $\lim _{x \rightarrow 0} \frac{1}{x}(\sqrt{1+x}-\sqrt{1-x})$
$\lim _{x \rightarrow 0} \frac{1}{x}(\sqrt{1+x}-\sqrt{1-x})$ को मान निर्णय गर।
(b) If $u=\sin \alpha x+\cos \alpha x$. Show that $u_{e}=\alpha^{n}\left\{1+(-1)^{n} \sin 2 \alpha x\right\}^{1 / 2}$.

यमि $u=\sin \alpha x+\cos \alpha x$ स, णारून फেथाब खে, $u_{n}=\alpha^{\prime \prime}\left\{1+(-1)^{n} \sin 2 \alpha x\right\}^{1 / 2}$ ।
यदि $u=\sin \alpha x+\cos \alpha x$ भए देबाऊ $u_{n}=\alpha^{n}\left\{1+(-1)^{n} \sin 2 \alpha x\right)^{1 / 2}$ ।
(c) Find the area of the curve, $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$.

वक्र $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{23}=1$ को क्षेत्रफल निकाल।
(d) If $I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x$, where ' n ' is a positive integer, prove that $I_{m}=\frac{n-1}{n} I_{e-2}$, for $n>2$.
 $I_{n}=\frac{n-1}{n} I_{n-2}$ बिचानन $n>2$ ।
एउटा घनात्मक पूर्णांक ' n ' को लागी यदि $I_{n}=\int_{0}^{x / 2} \sin ^{n} x d x$ भए, $n>2$ को लागी $I_{n}=\frac{n-1}{n} I_{n-2}$ हुन्छ भनी देखा़।

UG/CBCS/B.Sc/Programme/1st Sem./Mathematics/MATHDSC1/2022
(e) Find the angle of rotation of the axes for which the equation $x^{2}-y^{2}=a^{2}$ will reduce to $x y=c^{2}$. Determine c^{2}.

समीकरण $x^{2}-y^{2}=a^{2}+x y=c^{2}$ मा परिणत हुदा. अक्षहरूं घुमेको कोण निर्णय गर। c^{2} को मान पनि निर्णय गर।
(f) If $y=e^{m a 3^{-1} x}$, show that $\left(1-x^{2}\right) y_{2}-x y_{1}-m^{2} y=0$.

यदि $y=e^{\pi \operatorname{man}^{-1} x}$ इए, जाइल लिखात यে $\left(1-x^{2}\right) y_{2}-x y_{1}-m^{2} y=01$
यदि $y=e^{\operatorname{man}^{-1} x}$ भए, प्रमाण गर $\left(1-x^{2}\right) y_{2}-x y_{1}-m^{2} y=0$.

GROUP-B / रिखाभ-ष/ समूह-ख
$6 \times 4=24$
2. Answer any four questions from the following:

कुनै चार प्रश्नहरूको उत्तर लेख -
(a) Find a, b in order that $\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1$.

यनि $\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1$ इत, जाशन a जिर b-मात मान निर्णय रत।
$\lim _{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1$ भए, a, b को मान निर्णय गर।
(b) If $y^{/ / n}+y^{-1 / n}=2 x$, prove that $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.

$$
\left(x^{2}-1\right) y_{v+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0
$$

यदि $y^{\nu / m}+y^{-\nu m}=2 x$ भए, $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$ हुन्छ भनी प्रमाण गर।
(c) If $\Lambda_{n}=\int_{0} x^{n} \tan ^{-1} x d x,(n>2)$, then prove that $(n+1) I_{n}+(n-1) I_{s-2}=\frac{\pi}{2}-\frac{1}{n}$.

यदि $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x,(n>2)$ रह, जाइलन क्रशाष कबत्न तx $(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}$.
यदि $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x,(n>2)$ भए, प्रमाण गर $(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}$ ।
(d) Find the asymptotes of the curve $x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}+x+y+1=0$.
 वक्र $x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}+x+y+1=0$ को एसिम्टोट् निर्णय गर।
(e) Show that the spheres $x^{2}+y^{2}+z^{2}-2 x-4 y-4 z=0$ and
$x^{2}+y^{2}+z^{2}+10 x+2 z+10=0$ touch each other externally. Find the point of contact.
तुजाख खx $x^{2}+y^{2}+z^{2}-2 x-4 y-4 z=0$ बनर $x^{2}+y^{2}+z^{2}+10 x+2 z+10=0$ बं

अण्डाकर वृत्तहरू $x^{2}+y^{2}+z^{2}-2 x-4 y-4 z=0$ अनि
$x^{2}+y^{2}+z^{2}+10 x+2 z+10=0$ एकाकी लाई हुच्छ भनी प्रमाण गर।
(f) Trace the curve : $(x+3)\left(x^{2}+y^{2}\right)=4$.
$(x+3)\left(x^{2}+y^{2}\right)=4$ बई दख्रक्जबाजि অझ्न (Trace) कड।
वक्र $(x+3)\left(x^{2}+y^{2}\right)=4$ को चित्र बनाऊ।

GROUP-C / विउार-特/ समूह-ग

3. Answer any two questions from the following:

कुनै दुईवटा प्रश्नहरूको उत्तर लेख -
(a) (i) Find a reduction formula for $\int \sin ^{n} x \cos ^{n} x d x$, where $m, n \in \mathbb{N}$. Hence find a reduction formula for $\int_{0}^{\pi / 2} \sin ^{\pi} x \cos ^{\mathrm{n}} x d x$. $\int \sin ^{n} x \cos ^{n} x d x$-बड ब्वाभ সৃड (reduction formula) बबन्र कन्न बयबान $m, n \in \mathbb{N}$. अতःপৰ $\int_{0}^{\pi / 2} \sin ^{\pi} x \cos ^{n} x d x$-बत ब্बाभ मूढ्ड (reduction formula) बबन्न रत। $\int \sin ^{n} x \cos ^{n} x d x, m, n \in \mathrm{~N}^{\prime}$ को लागी reduction सूत्र निर्णय गर। त्यस पछि $\int_{0}^{x / 2} \sin ^{n 1} x \cos ^{n} x d x$ को reduction सूत्र निर्णय गर।
(ii) If $y=2 \cos x(\sin x-\cos x)$, then find $\frac{d^{10} y}{d x^{10}}$ at $x=0$,

यदि $y=2 \cos x(\sin x-\cos x)$ इय, जाइलन $x=0$ बिन्दूए大 $\frac{d^{10} y}{d x^{10}}$-बत मान निर्णाइ कब। यदि $y=2 \cos x(\sin x-\cos x)$ भए, $x=0$ का $\frac{d^{10} y}{d x^{10}}$ को मान निर्णय गर।
(b) (i) Find the nature of the conic $r=\frac{2}{4+\cos \theta}$ and also find the equation of directiries.
 निर्णग कर।
कोनिक $r=\frac{2}{4+\cos \theta}$ को प्रकृति निर्णय गर अनि directirics को मान पनि निर्णय गर।
(ii) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0,2 x+3 y+4 z=8$ is a great circle.
फ़ानदून्ब गमीक्जव निर्भग कन्र्र एেथाढन $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z=8$ ৎई বৃ्बढि এकी great वृত्ड।
वृत्त $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0,2 x+3 y+4 z=8$ एउटा वृहत्त वृत भए भने अण्डा वृत्तको समीकरण निर्णय गर।
(c) (i) Discuss the nature of the conic $4 x^{2}-4 x y+y^{2}+2 x-26 y+9=0$ and reduce it to its canonical form.
$4 x^{2}-4 x y+y^{2}+2 x-26 y+9=0$ बर conic-जित nature मnभक्ष आालाढना कन्त्र氏বए এটির canonical form তে reduce কর্রে লেষ্টা
कोनिक $4 x^{2}-4 x y+y^{2}+2 x-26 y+9=0$ को प्रकृति छलफल गदे यसलाई canonical रूपमा परिणत गर।
(ii) Find the volume of the solid obtained by revolving the cycloid
$x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ about its basc.

आधारको अड़ानमा एउटा साइक्लोइड $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ लाई घुमाउँदा पाएको ठोस् को मात्रा (volume) निर्णय गर।
(d) (i) Prove that the curves $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1, \frac{x^{2}}{a^{\prime}}+\frac{y^{2}}{b^{\prime}}=1$ cut orthogonally if $a-b=a^{\prime}-b^{\prime}$.
 $a-b=a^{\prime}-b^{\prime}$ रस
वक्रहरू $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ अनि $\frac{x^{2}}{a^{\prime}}+\frac{y^{2}}{b^{\prime}}=1$ लम्बवत् रूपमा (orthogonally) काटिन्छ यदि $a-b=a^{\prime}-b^{\prime}$ प्रमाण गर।
(ii) If $y=x^{2 n}(n \in \mathbb{N})$, then show that $y_{n}=2^{n}\left[\begin{array}{lll}-3 & 5 \cdots(2 n-1)] x^{n} \text {. }\end{array}\right.$

यमि $y=x^{2 n}(n \in \mathbb{N})$ स्य, जारून लেथाब वে $y_{n}=2^{n}[1 \cdot 3 \cdot 5 \cdots(2 n-1)] x^{n}$.
यदि $y=x^{2 n}(n \in \mathbb{N})$ भए, प्रमाण गर, $y_{n}=2^{n}[1 \cdot 3 \cdot 5 \cdots(2 n-1)] x^{\circ}$ ।

